Ацетилхолин - это медиатор нервного возбуждения. Ацетилхолин: особенности, препараты, свойства

Систематическое (МСТПХ) название:

2-ацетокси- N,N,N-триметилэтанаминиум

Свойства:

Химическая формула – C7H16NO+2

Молярная масса – 146,2074г моль-1

Фармакология:

Период полувыведения – 2 минуты

Ацетилхолин (АЦХ) представляет собой органическую молекулу, которая на большинство организмов, включая и организм человека, воздействует как нейротрансмиттер. Является сложным эфиром уксусной кислоты и холином, химическая формула ацетилхолина –CH3COO(CH2)2N+(CH3)3, систематическое (МСТПХ) название – 2-ацетокси- N,N,N-триметилэтанаминиум. Ацетилхолин является одним из многих нейротрансмиттеров в автономной (вегетативной) нервной системе. Он оказывает влияние как на периферическую нервную систему (ПНС), так и на центральную нервную систему (ЦНС) и является единственным нейротрансмиттером, использующимся в моторном отделе соматической нервной системы. Ацетилхолин является главным нейротрансмиттером в вегетативных ганглиях. В сердечной ткани нейротрансмиссия ацетилхолина обладает ингибиторным эффектом, что способствует снижению сердечного ритма. С другой стороны, ацетилхолин ведет себя как возбуждающий нейротрансмиттер в нейромышечных соединениях скелетной мышцы.

История создания

Ацетилхолин (АЦХ) впервые был обнаружен Генри Халлетом Дейлом в 1915 году, когда было замечено влияние данного нейротрансмиттера на сердечную ткань. Отто Леви подтвердил, что ацетилхолин является нейротрансмиттером и назвал его Vagusstuff («блуждающее нечто», англ.) поскольку образец был получен из блуждающего нерва. В 1936 году оба за свои труды получили Нобелевскую премию в области физиологии и медицины. Ацетилхолин был первым обнаруженным нейротрансмиттером.

Функция

Ацетилхолин

Аббревиатура : АЦХ

Источники : множественные

Направленность : множественная

Рецепторы : никотиновые, мускариновые

Предшественник : холин, ацетил-КоА

Синтезирующий энзим : холин ацетилтрансфераза

Метаболизирующий энзим : ацетилхолинэстераза

Ацетилхолин как нейротрансмиттер обладает действием и в ПНС (периферической нервной системе), и в ЦНС. Его рецепторы обладают очень высокими константами связывания. В ПНС ацетилхолин активирует мышцы и является основным нейротрансмиттером в автономной нервной системе. В ЦНС ацетилхолин вместе с нейронами и формирует систему нейротрансмиттеров, холинергическую систему, которая способствует ингибиторной активности.

В ПНС

В ПНС ацетилхолин активирует скелетные мышцы и является основным нейротрансмиттером в автономной нервной системе. Ацетилхолин привязывается к ацетилхолиновым рецепторам на тканях скелетной мышцы и открывает лиганд-активируемые натриевые каналы в клеточной мембране. Ионы натрия затем проникают в мышечную клетку, начинают в ней действовать и приводят к сокращению мышцы.Хотя ацетилхолин и вызывает сокращение скелетной мышцы, для подавления сокращения тканей сердечной мышцы он воздействует с помощью рецептора иного типа (мускарина).

В автономной нервной системе

В автономной нервной системе ацетилхолин выделяется:

    Во всех постганглионарных парасимпатикотроных нейронах

    Во всех преганглионарных симпатикотропных нейронах

    Сердцевина надпочечника является измененной симпатикотропной ганглией. При стимуляции ацетилхолином, сердцевина надпочечника вырабатывает эпинефрин и норэпинефрин

В некоторых постганглионарных симпатикотропнхы тканях

    В нейронах-стимуляторах потовых желез и в самих потовых железах

В центральной нервной системе

В центральной нервной системе ацетилхолин обладает некоторыми свойствами нейромодулятора и воздействует на гибкость, активацию и подкрепляющую систему. АЦХ играет важную роль в улучшении сенсорного восприятия во время просыпания, а также обеспечивает внимательность. Повреждение холинэргических (производящих ацетилхолин) систем в мозге способствуют ухудшению памяти при . Ацетилхолин задействован в . Также недавно было выявлено, что спад ацетилхолина может быть основной причиной депрессий.

Проводящие пути

Насчитывается три вида проводящих путей ацетилхолина в ЦНС

    Через варолиев мост к таламусу и коре головного мозга

    Через крупноклеточное ядро глазодвигательного нерва к коре

    Септогиппокампальным путем

Структура

Ацетилхолин является многоатомным катионом. Вместе с близлежащими нейронами ацетилхолин образует систему нейротрансмиттеров, холинэргическую систему, в стволовой части мозга и базальных отделах переднего мозга, которая способствует распространению аксонов в разные участки мозга. В стволовой части мозга данная система берет свое начало из педункулопонтийного ядра и латеродорсального тегментального ядра, которые вместе составляют вентральную тегментальную область. В базальных отделах переднего мозга данная система берет свое начало в базальном оптическом ядре Мейнерта и септальном ядре:

Ко всему прочему, ацетилхолин действует как важный «внутренний» трансмиттер в стриатуме, что является частью базального ядра. Он высвобождается посредством холинэргического промежуточного нейрона.

Чувствительность и ингибирование

Ацетилхолин обладает и другими воздействиями на нейроны – способен вызывать медленную деполяризацию посредством блокировки тонически активного тока К+, что увеличивает чувствительность нейронов. Также ацетилхолин способен активировать проводники катионов и таким образом напрямую стимулировать нейроны. Постсинаптические М4-мускариновые рецепторы ацетилхолина открывают внутренний вентиль калиевого ионного канала (Kir) и приводят к ингибированию. Воздействие ацетилхолина на отдельные типы нейронов может зависеть от продолжительности холинэргической стимуляции. Например, кратковременное облучение ацетилхолина (несколько секунд) может способствовать ингибированию кортикальных пирамидальных нейронов посредством мускариновых рецептор, привязанных к G-белку подгруппы альфа Gq типа. Активация рецептора М1 способствует выбросу кальция из внутриклеточного пула, что впоследствии способствует активации калиевой проводимости, что в свою очередь ингибирует разжигание пирамидальных нейронов. С другой стороны, активация тонического рецептора М1 является крайне возбуждающей. Так, воздействие ацетилхолина на один и тот же тип рецептора может способствовать возникновению разных эффектов в одинаковых постсинаптических нейронах в зависимости от продолжительности активации рецептора. Недавние эксперименты на животных выявили, что кортикальные нейроны на самом деле испытывают временные и постоянные изменения в местных уровнях ацетилхолина при поиске партнера. В коре головного мозга тонический ацетилхолин ингибирует 4 слой средних шипиковых нейронов, а в слоях 2/3 и 5 возбуждает пирамидальные клетки. Это позволяет отфильтровать слабую афферентную импульсацию в 4 слое и усилить импульсацию, которая будет доходить до слоя 2/3 и слоя L5 возбудителя микроцепей. Как результат, данное воздействие ацетилхолина на слои служит усилением отношения «сигнал-шум» в работе коры головного мозга. В то же время, ацетилхолин воздействует через никотиновые рецепторы и возбуждает определенные группы ингибиторных ассоциативных нейронов в коре, что способствует затуханию активности в коре.

Процесс принятия решений

Одной из основных функций ацетилхолина в коре головного мозга является увеличенная восприимчивость сенсорного раздражителя, что является формой внимания. Фазовые увеличения ацетилхолина при визуальной, слуховой и соматосенсорной стимуляции способствовали увеличению частоты испускания нейронов в соответствующих главных сенсорных зонах коры говного мозга. Когда холинэргические нейроны в базальном отделе переднего мозга поражены, у животных значительно ухудшается способность распознавать визуальные сигналы. При рассмотрении воздействия ацетилхолина на таламокортикальные связи, путь передачи сенсорных данных, выявилось, что применение холинэргического агониста карбахолина in vitro на слуховую кору мозга мышей способствовало улучшению таламокортикальной активности. В 1997 году был применен другой холинэргический агонист, и было выявлено, что активность была улучшена в таламокртикальных синапсах. Данное открытие доказало, что ацетилхолин играет важную роль в ходе трансмиссии информации от таламуса к различным отделам коры головного мозга. Еще одной функцией ацетилхолина в коре головного мозга является подавление передачи интракортикальной информации. В 1997 году к неокортикальным слоям был применен холинэргический агонист мускарин и было обнаружено, что возбудительные постсинаптические потенциалы между интракортикальными синапсами были подавлены. In vitro применение холинэргического агониста карбахолина на слуховой коре мышей также подавило активность. Оптическая запись с использованием краски, чувствительной к напряжению, в визуальных кортикальных долях выявила значительное подавление состояния интракортикального возбуждения при наличии ацетилхолина. Некоторые формы обучения и пластичности в коре головного мозга зависят от наличия ацетилхолина. В 1986 году было выявлено, что типичное синаптическое перераспределение в первичной зрительной коре, возникающее в ходе монокулярной депривации, снижается при истощении холинэргических вбросов в данную область коры. В 1998 году было выявлено, что повторяющаяся стимуляция базальных отделов переднего мозга, основного источника ацетилхолиновых нейронов, наряду с облучением звуком на определенной частоте, приводила к перераспределению слуховой зоны коры головного мозга в лучшую сторону. В 1996 году было исследовано воздействие ацетилхолина на пластичность, зависимую от опыта, путем снижения холинэргических сигналов в колончатом коре крыс. У животных с недостатком холинэргичности подвижность усов значительно снижена. В 2006 году было обнаружено, что активация никотиновых и мускариновых рецепторов в прилежащем ядре мозга необходима для выполнения заданий, за которые животные получали еду. Ацетилхолин неоднозначно проявляет себя в используемых для исследований средах, что было выявлено на основе функций, описанных выше, и результатов, полученных на основе выполняемых испытуемыми поведенческих тестов с использованием раздражителей. Разница во времени реакции между корректно проведенными тестами и некорректно проведенными тестами у приматов разнилась инверсивно при фармакологическом изменении уровня ацетилхолина и хирургическом изменении уровня ацетилхолина. Схожие данные были получены при исследовании , а также при обследовании курильщиков после получения дозы никотина (агонист ацетилхолина).

Синтез и распад

Ацетилхолин синтезируется в определенных нейронах с помощью энзима холинцетилтрансферазы из составляющих холина и ацетил-CoA. Холинэргические нейроны отвечают за выработку ацетилхолина. Примером центральной холинэргической области является базальное ядро Мейнерта в базальном отделе переднего мозга. Энзим ацетилхолинэстеразы преобразует ацетилхолин в неактивные метаболиты холина и ацетата. Данный энзим в избытке содержится в синаптической щели и в его задачи входит быстрое очищение свободного ацетилхолина от синапса, что крайне важно для хорошего функционирования мышц. Определенные нейротоксины способны ингибировать ацетилхолинэстеразы, что приводит к избытку ацетилхолина в нейромышечном соединении и вызывает паралич, остановку дыхания и сердца.

Рецепторы

Существует два основных класса ацетилхолинового рецептора – никотиновый ацетилхолиновый рецептор (н-холинорецептор) и мускариновый ацетилхолиновый рецептор (м-холинорецептор). Они получили свои названия по лигандам, активирующим рецепторы.

Н-холинорецепторы

Н-холинорецепторы представляют собой ионотропные рецепторы, проницаемые ионами натрия, калия и кальция. Стимулируются никотином и ацетилхолином. Подразделяются на два главных типа – мышечный и нейронный. Мышечный может частично блокироваться кураре, а нейронный – гексонием. Основные места расположения н-холинорецептора – мышечные концевые пластины, автонономные ганглии (симпатическая и парасимпатическая) и ЦНС.

Никотиновые

Миастения гравис

Заболевание миастения гравис, симптомами которого являются мышечная слабость и утомление, развивается, когда тело не должным образом выделяет антитела против никотиновых рецепторов, таким образом ингибируя корректную трансмиссию ацетилхолинового сигнала. С течением времени концевые пластины двигательного нерва в мышце разрушаются. Для лечения данного заболевания используют препараты, ингибирующие ацетилхолинэстеразу – неостигмин, физостигмин или пиридостигмин. Данные препараты способствуют тому, что эндогенный ацетилхолин дольше взаимодействует с соответствующими ему рецепторами перед тем, как быть деактивированным ацетилхолинэстеразой в синаптической щели (область между нервом и мышцей).

М-холинорецепторы

Мускариновые рецепторы являются метаботропными и воздействуют на нейроны более продолжительное время. Стимулируются мускарином и ацетилхолином. Мускариновые рецепторы расположены в ЦНС и ПНС сердца, легких, в верхнем желудочно-кишечном тракте и потовых железах. Ацетилхолин иногда используется в ходе операций по удалению катаракты для сужения зрачка. Атропин, содержащийся в белладонне, обладает противоположным эффектом (антихолинэргическим) поскольку блокирует м-холинорецепторы и тем самым расширяет зрачок, откуда по сути и происходит название растения («bella donna» с испанского переводится как «красивая женщина») – женщины использовали данное растения для расширения зрачков в косметических целях. Используется внутрь глаза, поскольку роговичная холинэстераза способна метаболизировать примененный местно ацетилхолин еще до того, как тот достигнет глаза. Тот же принцип используется для расширения зрачка, при сердечно-легочной реанимации и др.

Вещества, воздействующие на холинэргическую систему

Блокирование, замедление или имитация действия ацетилхолина повсеместно применяется в медицине. Вещества, влияющие на ацетилхолиновую систему, являются либо агонистами рецепторов, стимулируя систему, либо антагонистами, подавляя ее.

Никотиновые рецепторы двух типов: Nm и Nn. Nm находится в нейромышечном соединении и способствует сокращению скелетных мышц через потенциал концевой пластинки. Nn вызывает деполяризацию в автономной ганглии, что приводит к постганглионарному импульсу. Никотиновые рецепторы способствуют выбросу катехоламина из мозгового слоя надпочечников, а также являются возбудителями или ингибиторами в мозге. И Nm, и Nn связаны каналами Na+ и k+, однако Nn связан дополнительным каналом Ca+++.

Агонисты/антагонисты ацетилхолинового рецептора

Агонисты и антагонисты ацетилхолинового рецептора могут воздействовать на рецепторы напрямую или косвенно путем влияния на энзим ацетилхолинэстеразу, что приводит к разрушению рецептора лиганд. Агонисты увеличивают уровень активации рецепторов, антагонисты снижают его.

Заболевания

Агонисты ацетилхолиновго рецептора используются для лечения миастении гравис и болезни Альцгеймера.

Болезнь Альцгеймера

Поскольку количество ацетилхолиновых рецепторов α4β2 снижено, в ходе лечения используются препараты, ингибирующие холинэстеразу, например галантамина гидробромид (конкурентный и обратимо действущий ингибитор).

Препараты прямого действия Препараты, описанные ниже, имитируют действие ацетилхолина на рецепторы. В малых дозах они стимулируют рецепторы, в больших – вызывают онемение.

    ацетил-карнитин

    ацетилхолин

    бетанехол

    карбахолин

    цевимелин

    мускарин

  • пилокарпин

    суберилхолин

    суксаметоний

Ингибиторы холинэстеразы

Большинство косвенно действующих агонистов ацетилхолинового рецептора воздействуют путем ингибирования энзима ацетилхолинэстеразы. Происходящая в итоге аккумуляция ацетилхолина вызывает продолжительную стимуляцию мышц, желез и ЦНС. Данные агонисты являются примерами ингибиторов энзимов, они увеличивают действенность ацетилхолина путем замедления его распада; некоторые используются как агенты нервно-паралитического действия (зарин, газ нервно-паралитического действия VX) или как пестициды (органофосфаты и карбаматы). Клинически применяется для обращения действия мышечных релаксантов, для лечения миастении гравис и симптомов болезни Альцгеймера (ривастигмин, который увеличивает холинэргическую активность в мозге).

Обратимо действующие вещества

Следующие вещества обратимо ингибируют энзим ацетилхолинэстеразы (который разрушает ацетилхолин), таким образом, увеличивая уровни ацетилхолина.

Большинство препаратов, использующихся при лечении болезни Альцгеймера

    Донепезил

    Ривастигмин

  • Эдрофоний (различает миастенический и холинэргический кризис)

    Неостигмин(обычно используется для обращения действия нейромускульных блокаторов, используемых в анестезии, реже – при миастении гравис)

    Физостигмин (используется при глаукоме и при передозировках антихолинэргическими препаратами)

    Пиридостигмин (при лечении миастении гравис)

    Карбаматные инсектициды (альдикарб)

    Гуперизин А

Необратимо действующие вещества

Ингибируют энзим ацетилхолинэстеразы.

    Эхотиофат

    Изофлуорофат

    Органофосфатные инсектициды (малатион, Pпаратион, азинфос метил, хлорпирифос)

    Органофосфатсодержащие агенты нервно-паралитического действия (зарин, газ нервно-паралитического действия VX)

Жертвы органофосфатсодержащих агентов нервно-паралитического действия обычно погибают от удушения, поскольку не в состоянии расслабить диафрагму.

Переактивация ацетилхолиновой эстеразы

    Пралидоксим

Антагонисты ацетилхоинового рецептора

Противомускариновые агенты

Ганглионарные блокаторы

    Мекамиламин

    Гексаметоний

    Триметафан

Нейромускульные блокаторы

    Атракурий

    Цисатракурий

    Доксакурий

    Метокурин

    Мивакурий

    Панкуроний

    Рокуроний

    Суцинилхолин

    Тубокуранин

    Векуроний

Ингибиторы синтеза

    Органические ртутосодержащие вещества, такие как метилртуть, обладают сильной связью с сулифидрильными группами, что вызывает дисфункцию энзима холинацетилтрансферазы. Данное ингибирование может привести к ацетилхолинной недостаточности, что может отразиться на моторной функции.

    Ингибиторы холинового реаптейка

    Гемихолин

Ингибиторы выброса

    Ботулин подавляет выброс ацетилхолина, а яд черной вдовы (альфа-латротоксин) обладает обратным эффектом. Ингибирование ацетилхолина вызывает паралич. При укусе черной вдовы, содержание ацетилхолина резко падает, и мышцы начинают сокращаться. При полном истощении наступает паралич.

Другое/неидентифицированное/неизвестное

    Суругатоксин

Химический синтез

Ацетилхолин, 2-ацетокси-N,N,N-триметилэтил аммоний хлорид, легко синтезируется с применением различных способов. Например, 2-хлороэтанол вступает в реакцию с триметиламином, и получившийся в результате N,N,N-триметилэтил-2-этаноламин гидрохлорид, также называемый холином, ацетилируется андригидом уксусной кислоты или ацетилхлоридом, и в итоге получается ацетилхолин. Второй метод синтеза заключается в следующем– триметиламин вступает в реакцию с этилен оксидом, который при реакции с гидрогеном хлорида превращается в гидрохлорид, который, в свою очередь, ацетилируется как уже было описано выше. Также ацетилхолин можно получить путем взаимодействия 2-хлороэтанол ацетата и триметиламина.

Ацетилхолин
Общие
Систематическое наименование N,N,N-триметил-2-аминоэтанола ацетат
Сокращения ACh
Химическая формула СH 3 CO 2 CH 2 CH 2 N(СH 3) 3
Эмпирическая формула C 7 H 16 N O 2
Физические свойства
Молярная масса 146.21 г/моль
Термические свойства
Классификация
Рег. номер CAS 51-84-3
Рег. номер PubChem 187
SMILES O=C(OCC(C)(C)C)C

Свойства

Физические

Бесцветные кристаллы или белая кристаллическая масса. Расплывается на воздухе. Легко растворим в воде и спирте. При кипячении и длительном хранении растворы разлагаются.

Медицинские

Периферическое мускариноподобное действие ацетилхолина проявляется в замедлении сердечных сокращений, расширении периферических кровеносных сосудов и понижении артериального давления , усилении перистальтики желудка и кишечника , сокращении мускулатуры бронхов, матки, желчного и мочевого пузыря, усилении секреции пищеварительных, бронхиальных, потовых и слёзных желез, миоз . Миотический эффект связан с усилением сокращения круговой мышцы радужной оболочки, которая иннервируется постганглионарными холинергическими волокнами глазодвигательного нерва . Одновременно в результате сокращения ресничной мышцы и расслабления цинновой связки ресничного пояска наступает спазм аккомодации.

Сужение зрачка, обусловленное действием ацетилхолина, сопровождается обычно понижением внутриглазного давления. Этот эффект частично объясняется тем, что при сужении зрачка и уплощении радужной оболочки расширяется шлеммов канал (венозный синус склеры) и фонтановы пространства (пространства радужно-роговичного угла), что обеспечивает лучший отток жидкости из внутренних сред глаза. Не исключено, что в понижении внутриглазного давления принимают участие и другие механизмы. В связи со способностью снижать внутриглазное давление вещества, действующие подобно ацетилхолину (холиномиметики, антихолинэстеразные препараты), имеют широкое применение для лечения глаукомы . Следует учитывать, что при введении этих препаратов в конъюктивальный мешок они всасываются в кровь и, оказывая резорбтивное действие, могут вызвать характерные для этих препаратов побочные явления. Следует также иметь в виду, что длительное (в течение ряда лет) применение миотических веществ может иногда привести к развитию стойкого (необратимого) миоза , образованию задних петехий и другим осложнениям, а длительное применение в качестве миотиков антихолинэстеразных препаратов может способствовать развитию катаракты .

Ацетилхолину принадлежит также важная роль как медиатору ЦНС . Он участвует в передаче импульсов в разных отделах мозга, при этом малые концентрации облегчают, а большие - тормозят синаптическую передачу . Изменения в обмене ацетилхолина могут привести к нарушению функций мозга. Недостаток его во многом определяет клиническую картину такого опасного нейродегенеративного заболевания, как болезнь Альцгеймера . Некоторые центральнодействующие антагонисты ацетилхолина (см. Амизил) являются психотропными препаратами (см. также Атропин). Передозировка антагонистов ацетилхолина может вызвать нарушения высшей нервной деятельности (оказывать галлюциногенный эффект и др.).

Применение

Общее применение

Для применения в медицинской практике и для экспериментальных исследований выпускается ацетилхолин-хлорид (лат. Acetylcholini chloridum ). Как лекарственное средство ацетилхолин-хлорид широкого применения не имеет.

Лечение

При приёме внутрь ацетилхолин неэффективен, так как он быстро гидролизуется. При парентеральном введении оказывает быстрый, резкий, но непродолжительный эффект. Как и другие четвертичные соединения, ацетилхолин плохо проникает через гематоэнцефалический барьер и не оказывает существенного влияния на ЦНС . Иногда пользуются ацетилхолином как сосудорасширяющим средством при спазмах периферических сосудов (эндартериит , перемежающаяся хромота, трофические расстройства в культях и т. д.), при спазмах артерий сетчатки . В редких случаях вводят ацетилхолин при атонии кишечника и мочевого пузыря. Ацетилхолин применяют также иногда для облегчения рентгенологической диагностики ахалазии пищевода.

Форма применения

Препарат назначают под кожу и внутримышечно в дозе (для взрослых) 0,05 г или 0,1 г. Инъекции в случае необходимости можно повторять 2-3 раза в день. При инъекции следует убедиться, что игла не попала в вену . Внутривенное введение не допускается из-за возможности резкого понижения артериального давления и остановки сердца .

Высшие дозы под кожу и внутримышечно для взрослых:

  • разовая 0,1 г,
  • суточная 0,3 г.

Опасность применения при лечении

При применении ацетилхолина следует учитывать, что он вызывает сужение венечных сосудов сердца. При передозировке могут наблюдаться резкое понижение артериального давления с брадикардией и нарушениями сердечного ритма , профузный пот , миоз , усиление перистальтики кишечника и другие явления. В этих случаях следует немедленно ввести в вену или под кожу 1 мл 0,1 % раствора атропина (при необходимости повторно) или другой холинолитический препарат (см. Метацин).

Участие в процессах жизнедеятельности

Образующийся в организме (эндогенный) ацетилхолин играет важную роль в процессах жизнедеятельности: он принимает участие в передаче нервного возбуждения в ЦНС , вегетативных узлах, окончаниях парасимпатических и двигательных нервов. Ацетилхолин связан с функциями памяти. Снижение ацетилхолина при болезни Альцгеймера приводит к ослаблению памяти у пациентов. Ацетилхолин играет важную роль в засыпании и пробуждении. Пробуждение происходит при увеличении активности холинергических нейронов в базальных ядрах переднего мозга и стволе головного мозга .

Физиологические свойства

Ацетилхолин является химическим передатчиком (медиатором) нервного возбуждения; окончания нервных волокон, для которых он служит медиатором, называются холинергическими, а рецепторы, взаимодействующие с ним, называют холинорецепторами. Холинорецептор (по современной зарубежной терминологии - «холиноцептор») является сложной белковой макромолекулой (нуклеопротеидом), локализованной на внешней стороне постсинаптической мембраны. При этом холинорецептор постганглионарных холинергических нервов (сердца, гладких мышц, желез) обозначают как м-холинорецепторы (мускариночувствительные), а расположенные в области ганглионарных синапсов и в соматических нервномышечных синапсах - как н-холинорецепторы (никотиночувствительнные). Такое деление связано с особенностями реакций, возникающих при взаимодействии ацетилхолина с этими биохимическими системами: мускариноподобных в первом случае и никотиноподобных - во втором; м- и н-холинорецепторы находятся также в разных отделах ЦНС .

По современным данным, мускариночувствительные рецепторы делят на М1-, М2- и М3-рецепторы, которые по-разному распределяются в органах и разнородны по физиологическому значению (см. Атропин , Пиренцепин).

Ацетилхолин не оказывает строгого избирательного действия на разновидности холинорецепторов. В той или другой степени он действует на м- и н-холинорецепторы и на подгруппы м-холинорецепторов. Периферическое никотиноподобное действие ацетилхолина связано с его участием в передаче нервных импульсов с преганглионарных волокон на постганглионарные в вегетативных узлах, а также с двигательных нервов на поперечнополосатую мускулатуру. В малых дозах он является физиологическим передатчиком нервного возбуждения, в больших дозах может вызвать стойкую деполяризацию в области синапсов и блокировать передачу возбуждения.

Противопоказания

Ацетилхолин противопоказан при бронхиальной астме , стенокардии , атеросклерозе , органических заболеваниях сердца, эпилепсии .

Форма выпуска

Форма выпуска: в ампулах ёмкостью 5 мл, содержащих 0,1 и 0,2 г сухого вещества. Препарат растворяют непосредственно перед применением. Вскрывают ампулу и шприцем вводят в неё необходимое количество (2-5 мл) стерильной воды для

Ацетилхолицин представляет собой нейромедиатор, осуществляющий связующие функции в организме человека. Это соединение доводит импульсы до мышц и целого ряда органов. Оно используется в исследованиях, при этом его лекарственное значение в настоящее время невелико вследствие существенных побочных эффектов при большой дозе и наличия более действенных аналогов.

Общие сведения

Ацетилхолин имеет формулу CH 3 -CO 2 -CH 2 -CH 2 -N(CH 3) 3 .

Ацетилхолин - это органическое соединение, которое выступает в организме как , в том числе в парасимпатической нервной системе и в нервно-мышечном синапсе. В качестве нейромедиатора данное соединение обладает следующими характеристиками:

  • его синтез происходит в пресинаптическом нейроне;
  • аккумуляция ацетилхолина происходит в пузырьках;
  • это соединение выделяется в прямой пропорции к силе стимула, вызывающего такое выделение (частоте импульсации);
  • постсиноптическое действие этого вещества прямым образом иллюстрируется с помощью микроинофореза;
  • дезактивировать данный медиатор можно с помощью действенных механизмов.

Определено, что лишь соединения, у которых наблюдается каждая из данных характеристик, могут рассматриваться как медиаторы.

В химическом плане ацетилхолин является сложным эфиром, образованным холином и уксусной кислотой.

В организме данное вещество синтезируется посредством холинэстеразы - особого фермента. При его разрушении происходит образование уксусной кислоты и оксида. Соединение нестойкое и под влиянием ацетилхолинэстеразы оно также распадается весьма быстро.

Также возможно получить его искусственным путем в форме одной и из солей, к примеру, хлорида. Полученный таким способом препарат (ацетилхолин-хлорид) применяют для исследования в сфере фармакологии и в редких случаях как лекарственный препарат. Выпускается соединение в виде ампулы объёмом 5 миллилитров, в которых находится 0,1 либо 0,2 грамма сухого вещества. Для инъекций его растворяют в стерильной воде объёмом 2–5 миллилитров.

Ацетилхолин представляет собой кристаллическую массу белого цвета или бесцветные кристаллы.

Классификация холиновых белков (какие бывают и их специфика)

Холиновые белки подразделяются на воздействующие на н-холинорецепторы и м-холинорецепторы. Холинрецепторы - макромолекулы белка сложной структуры, которые располагаются на наружной стороны постсинаптической мембраны.

Первые из нихотиночувствительные, отсюда и буква «н» в их названии. Они встречаются внутри нервно-мышечных структур и ганглионных синапсов.

Вторая разновидность белков приобрела букву «м», поскольку они являются мускариночувствительными. Они присутствуют в области холинергических постганглионарных нервов. Иначе говоря, в сердце, гладкой мускулатуре и железах.

В нервной системе ацетилхолин синтезируется с участием глюкозы. При ее распаде возникают ацетильные группы, выделяется энергия. Благодаря этой энергии возникает аденозинтрифосфат, а уже посредством этого соединения происходит фосфорилирование соединений промежуточного характера, требуемых для синтеза. Предпоследняя стадия - это формирование ацетилкофермента А, из которого следом при реакции с холином возникает уже сам ацетилхолин.

При этом механизм попадания холинов в место образования ацетилхолина для реакции с ацетилкоферментом А в настоящее время неизвестен. Предполагается, что его половина поступает в это место из плазмы крови, а ещё половина остается после гидролиза прежнего

Синтез данного вещества происходит в нервных окончаниях внутри цитоплазмы аксонов. После этого соединение складируется в синаптических везикулах (пузырьках), В отдельном подобном органоиде находится от 1000 до 10000 молекул этого соединения. Предполагается, что примерно 15–20% объема данного вещества в пузырьках составляет количество ацетилхолина, доступное к немедленному использованию. Прочий хранящийся в везикулах запас может быть активирован для использования лишь спустя некоторое время после соответствующего сигнала.

Распад ацетилхолина в человеческом организме происходит весьма быстро. Запускается данный процесс ацетилхолинэстераза, специальный фермент.

Функции

Функция ацетилхолина - служить медиатором внутри ЦНС (центральной нервной системы). Это вещество влияет на передачу импульсов от одних разделов головного мозга к другим. При этом небольшое содержание данного вещества способствует передаче импульсов, а его значительное количество - тормозит её.

Также ацетилхолин служит для передачи к мускулам тела. При нехватке данного вещества сила, с которой сокращаются мускулы, падает. Недостаток именно данного соединения приводит к тому, что человека начинает страдать болезнью Альцгеймера.

Действие ацетилхолина выражается в более медленном ритме сердцебиения, снижении артериального давления, увеличении диаметра кровеносных сосудов периферического расположения. Соединение улучшает перистальтику в пищеварительном тракте (кишечнике и желудке). Также его присутствие усиливает сокращательную способность мускулатуры целого ряда органов, включая мочевой и желчный пузыри, матку, а также бронхи. Ацетилхолин усиливает железную секрецию, в частности у слёзных, потовых, бронхиальных и пищеварительных желёз.

Помимо этого он вызывает сужение зрачка (миоз), этот эффект становится следствием более интенсивных сокращение управляющей радужной оболочкой круговой мышцы, на которую воздействуют находящиеся в глазодвигательном нерве постганглионарные холинергетические волокна. .Такое сужение зрачка чаще всего идет в сочетании с уменьшением внутриглазного давления. Это обусловлено тем, что при таком сужении происходит расширение шлеммова канала, а также пространства в углу, образуемом радужной оболочкой и роговицей. Вследствие этого жидкость получает большую возможность для оттока из глазной внутренней среды.

Также ацетилхолин служит для улучшения концентрации внимания путем выработки нейронов, располагающихся в .

Ещё одна функция соединения - это влияние на засыпание и пробуждение. Спящий просыпается, после того как возрастает интенсивность деятельности холинергических нейронов, располагающихся в стволе головного мозга, а также в переднем мозге в базальных ядрах.

Ацетилхолицин, выработанный искусственно, используют для лечения лишь в некоторых случаях. Это обусловлено тем, что при пероральном приёме данное соединение быстро подвергается гидролизации, в результате чего его всасывания со слизистых желудочно-кишечного тракта не происходит. При введении его в организм иным образом, в том числе посредством инъекций он также не оказывает существенного воздействия на центральную нервную систему. Именно поэтому сейчас в большинстве случаев от него отказываются.

Также требуется иметь в виду, что ацетилхолин сужает вены в сердце. Если ввести пациенту чрезмерную дозу данного вещества, то результатом может стать брадикардия, падение артериального давления, аритмия, потливость и иные неблагоприятные эффекты.


Ацетилхолин осуществляет передачу нервных импульсов в холинергических синапсах. Открытие медиаторной роли ацетилхолина принадлежит австрийскому фармакологу О. Леви (Loewi). Холинергические синапсы имеются как в соматической, так и вегетативной нервной системе.

Двигательные волокна соматической нервной системы иннервируют скелетные мышцы, и с их окончаний выделяется ацетилхолин. Эфферентные проводящие пути вегетативной нервной системы состоят из двух нейронов: первый расположен в центральной нервной системе (в стволе головного мозга и спинном мозге), второй - в вегетативном ганглии, который относится к периферической нервной системе (рис. 5). Соответственно отростки первых нейронов формируют преганглионарные волокна, вторых - постганглионарные. В преганглионарных нейронах и симпатического, и парасимпатического отделов вегетативной нервной системы основным медиатором служит ацетилхолин. Различаются же симпатический и парасимпатический отделы по медиатору, высвобождающемуся в синапсах постганглионарного волокна: в симпатической нервной системе это норадреналин, в парасимпатической - ацетилхолин.
Таким образом, ацетилхолин служит передатчиком импульсов с окончаний всех парасимпатических постганглионарных волокон, с окончаний постганглионарных симпатических волокон, иннервирующих потовые железы, с окончаний всех (как симпатических, так и парасимпатических) преганглионарных волокон, с окончаний двигательных нервов поперечно-полосатых мышц, а также во многих центральных синапсах.

Химически ацетилхолин представляет собой сложный эфир холина и уксусной кислоты. Его синтез проходит в окончаниях нервных волокон из спирта холина и ацетил-КоА под влиянием фермента холинацетилтрансферазы. Скорость реакции синтеза лимитируется концентрацией холина в синаптических окончаниях. Синтезированный медиатор депонируется в везикулах в результате активного транспорта с участием фермента - Mg^-зависимая АТФаза. Основным механизмом выделения ацетилхолина в синаптическую щель, в результате чего формируется постсинаптический потенциал, служит Са2+-зависимый экзоцитоз. Деполяризация нервного окончания, которая увеличивает проницаемость пресинаптической мембраны для Са2+, - необходимое условие выделения ацетилхолина.
Ацетилхолин химически нестоек, в щелочной среде быстро распадается на холин и уксусную кислоту. Разрушение его в холинергическом синапсе катализируется ферментом ацетилхолинэстера- зой, открытым О. Леви. Ацетилхолинэстераза находится на постсинаптической мембране рядом с холинорецептором и является одним из самых быстродействующих ферментов. Быстрое разрушение медиатора обеспечивает лабильность холинергической нервной передачи. Образовавшийся холин захватывается белками-транспортерами пресинаптической мембраны и служит далее для восстановления ацетилхолина в терминали (рис. 6).

6. Схема строения холинергического синапса (цит. по: Маркова И. Н., Неженцева М. Н., 1997):
АХ - ацетилхолин; ХР - холинорецептор; М - мускариновый холинорецептор; Н - никотиновый холинорецептор; АХЭ - ацетилхолинэстераза; ТМ - транспортный механизм; ХА - холинацетилтрансфераза; (+) - активация; (-) - торможение

Действие ацетилхолина на мембрану состоит в его реакции с хо- линорецепторами, входящими в структуру клеточной мембраны (рис. 7). Так, реакция ацетилхолина с Н-холинорецептором вызывает изменение пространственного расположения атомов белковой молекулы рецептора. В результате увеличивается размер межмоле- кулярных пор мембраны, образуя свободный проход для ионов Na+, а затем и К+, и происходит деполяризация клеточной мембраны с последующей реполяризацией. Вызываемые ацетилхолином изменения молекулы рецептора легко обратимы. После передачи импульса уже приблизительно через 1 мс заканчивается деполяризация и восстанавливается обычная проницаемость мембраны. К этому времени холинорецептор уже свободен от связи с ацетилхолином.
Полагают, что вызываемая ацетилхолином деформация молекулы рецептора приводит не только к увеличению межмолекулярных пор мембраны, но и способствует отторжению ацетилхолина от рецептора. Отторжение это необходимо для взаимодействия освобождающего ацетилхолина с ацетилхолинэстеразой и его последующего разрушения (см. рис. 7).
Вещества, влияющие на холинорецепторы, способны вызывать стимулирующий (холиномиметический) или угнетающий (холинолитический) эффект.

о.
C-0-CH2CH2-N(CH3)3


/ C-0-CH2CH2-N(CH3)3
сн3
Рис. 7. Схема взаимодействия ацетилхолина с холинорецептором
и ацетилхолинэстеразой (цит. по: Закусов В. В., 1973):
ХР - холинорецептор; АХЭ - ацетилхолинэстераза; А - анодный центр ХР и АХЭ; Э - эстеразный центр АХЭ и эстерофильный центр ХР
Фармакологические вещества могут воздействовать на следующие этапы синаптической передачи холинергических синапсов: синтез ацетилхолина; 2) процесс высвобождения медиатора; 3) взаимодействие ацетилхолина с холинорецепторами; 4) разрушение ацетилхолина; 5) захват пресинаптическим окончанием холина, образующегося при разрушении ацетилхолина. Например, на уровне пресинаптических окончаний действует ботулиновый токсин, препятствующий высвобождению медиатора. Транспорт холина через пресинаптическую мембрану (нейрональный захват) угнетается гемихолином. Непосредственное влияние на холинорецепторы оказывают холиномиметики (пилокарпин, цитизин) и холинолитики (М- холиноблокаторы, ганглиоблокаторы и периферические миорелак- санты). Для угнетения фермента ацетилхолинэстеразы могут быть использованы антихолинэстеразные средства (прозерин).

Ацетилхолин - один из важнейших нейромедиаторов, он осуществляет нервно-мышечную передачу, является основным в парасимпатической нервной системе. Разрушается ферментом - ацетилхолинэстеразой .

Его применяют как лекарственное вещество и в фармакологических исследованиях.

Медицина

Периферическое мускариноподобное действие (мускарин - это тот, что в мухоморе) :

– замедление сердечных сокращений

– спазм аккомодации

Понижение артериального давления

– расширение периферических кровеносных сосудов

– сокращение мускулатуры бронхов, желчного и мочевого пузыря, матки

– усиление перистальтики желудка, кишечника,

– усиление секреции пищеварительных, потовых, бронхиальных, слёзных желез, миоз.

Сужение зрачка связано с понижением внутриглазного давления.

Ацетилхолин играет важную роль как медиатор ЦНС (передача импульсов в отделах мозга, малые концентрации облегчают, а большие тормозят синаптическую передачу).

Изменения в обмене ацетилхолина могут приводить к нарушению функций мозга. Недостаток во многом определяет картину заболевания – болезнь Альцгеймера.

Некоторые центральнодействующие антагонисты являются психотропными препаратами. Передозировка антагонистов может оказывать галлюциногенный эффект.

Зачем нужен

Образующийся в организме принимает участие в передаче нервного возбуждения в ЦНС, вегетативных узлах, окончаниях парасимпатических, двигательных нервов.

Ацетилхолин связан с функциями памяти. Снижение при болезни Альцгеймера ведет к ослаблению памяти.

Ацетилхолин играет важную роль в пробуждении и засыпании. Пробуждение происходит, когда увеличивается активность холинергических нейронов.

Физиологические свойства

В малых дозах является физиологическим передатчиком нервного возбуждения, а в больших дозах может блокировать передачу возбуждения.

На этот нейромедиатор влияет курение и употребление мухоморов.