Чем опасны нейротоксические воздействия? Реферат: Нейротоксины В концентрации 0 2 нейротоксины.

по биохимии

Механизм действия нейротоксинов ядов змей

Введение

химия змеиный яд

Змеиные яды являются уникальной по химическому составу и физиологическому действию группой биологически активных соединений. Токсические и лечебные свойства их известны человечеству с древнейших времен. Долгое время интерес к изучению этих ядовитых продуктов ограничивался потребностями медицинской практики. Большая часть работ была посвящена описанию клинической картины отравления, изысканию методов специфической и неспецифической терапии, а также использованию ядов змей и их препаратов в качестве лечебных средств. Рациональное применение змеиных ядов в медицине невозможно без экспериментального изучения и теоретического обоснования сущности реакций, развивающегося в организме в ответ на введение того или иного яда. Исследование отдельных механизмов действия на организм ядов змей необходимо для создания научно обоснованных методов лечения.

Недостаточная разработка о механизмах отравляющего действия змеиных ядов часто не позволяет врачам быстро и эффективно облегчить состояние пострадавшего. В ряде случаев принимается во внимание только внешняя картина отравления, и клиническая помощь ограничивается симптоматическими средствами без учета специфики действия яда на жизненно важные системы организма.

Следует отметить, что змеиные яды оказывают сильное токсическое воздействие только в летальных и сублетальных дозах. Небольшие дозы никаких клинических проявлений отравления не вызывают и издавна используются практической медициной. Однако терапевтическое применение часто проводится эмпирически без достаточного теоретического обоснования, что влечет за собой ошибки. Не приходится доказывать, что эффективное использование змеиных ядов в клинике должно опираться на глубокие знания их состава и свойств и в первую очередь на экспериментальные исследования, которые должны вскрыть физиологическую природу и механизмы действия этих ядовитых веществ и помочь врачам научно обоснованно применять яды в терапевтических целях. В исследовательских лабораториях резко возрос интерес к зоотоксинам, а в частности к змеиным ядам, в связи с получением из них в чистом виде ряда компонентов, которые обладают высокоспецифичным действием, а определенные биологические структуры.

Цель этой работы осветить современное состояние экспериментального изучения змеиных ядов, вскрыть механизмы патофизиологического воздействия на важнейшие функциональные системы организма.

Состояние химии змеиных ядов.

Получение ядов и его физико-химические свойства.

Наиболее простым способом получения ядовитого секрета у змей является механический массаж ядовитых желез. Сейчас часто вместо механического массажа применяют стимуляцию электрическим током.

Электростимуляция не только является более щадящим методом сбора яда, но и позволяет получать большее его количество. Количества яда, получаемого от одной особи, зависит от размеров тела змеи, ее физиологического состояния, числа повторных взятий яда, а также от ряда условий внешней среды. Необходимо отметить, что содержание змей в неволе отражается не только на количестве получаемого яда, но и на его токсичности. Так у яда кобры понижение токсичности наблюдается уже после полугода содержания в неволе. Яд гюрзы изменяет токсичность только после 2 лет содержания в питомнике. Что касается мелких змей (гадюка, щитомордник, эфа), то содержание их в серпентариях в течение года не отражается на свойствах ядов. Свежедобытый змеиный яд представляет собой слегка опалесцирующую, вязкую, достаточно прозрачную жидкость цвет яда варьирует от светло-желтого до лимонного.

Активная реакция ядов обычно кислая. Водные растворы их нестойки и теряют токсичность через несколько суток. Гораздо более устойчивы к воздействию факторов внешней среды становятся они после высушивания над хлористым кальцием или лиофилизации. Яды довольно термостабильны и в кислой среде выдерживают нагревание до 120 градусов Цельсия без потери активности. Разрушающе действуют на яды химические реагенты: КМnO4, эфир, хлороформ, этанол метиленовый синий. Также воздействуют физические факторы: УФ-облучение, рентгеновские лучи. Химический анализ показывает наличие в змеиных ядах как органических, так и неорганических веществ. По современным представлениям токсическая активность и биологические свойства змеиных ядов связаны с их белковыми компонентами.

Основные этапы изучения химического состава и структуры токсических полипептидов змеиных ядов. Вопросы о химической природе и механизмах действия змеиных ядов привлекали внимание исследователей. В ранних работах токсическое действие связывали с активностью присутствующих в ядах ферментов. В настоящее время общепринятой точкой зрения, согласно которой основные токсические свойства определяется неэнзиматическими полипептидами, наряду с которыми в ядах содержатся мощные ферментные системы, от природы и специфичности действия которых в большинстве случаев зависит своеобразие интегральной картины отравления. Достижения и успехи в области изучения химического состава ядов тесно связаны с развитием и совершенствованием методов фракционирования и очистки сложных смесей высокомолекулярных соединений. До 60-х годов при изучении ядов в основном использовали диализ через полупроницаемые мембраны и электрофоретическое разделение. Развитии методов гельфильтрации, ионообменной хроматографии, ультрацентрифугирования, а также разработка и автоматизация методов анализа первичной структуры макромолекул позволили в сравнительно короткие сроки расшифровать последовательность аминокислотных остатков токсических полипептидах большинства змей.

1.Терминология и классификация токсических полипептидов

химия змеиный яд

До последнего времени существовали терминологические трудности при попытке сравнительного анализа функциональных и структурных особенностей различных неэнзиматических токсических полипептидов змеиных ядов. В основном это касается полипептидов, выделенных из яда змей семейства Elapidae. На первых этапах изучения химического состава ядов подобные трудности были неизбежны и объяснялись недостаточной степенью очистки индивидуальных полипептидов, что в большинстве случаев затрудняло определение специфического характера их действия. В результате различные авторы разные наименования полипептидам, которые оказались чрезвычайно близкими, а подчас идентичными по своей химической структуре и фармакологическим эффектам. В частности, группа кардиотоксинов обозначалась как фактор, деполяризующий скелетную мускулатуру; токсин Y; прямой литический фактор - ПЛФ; кобрамины Аи В; цитотоксины 1и 2.

Одни авторы при выборе названия основывались на патофизиологических эффектах (кардиотоксин, ПЛФ, цитотоксин), другие подчеркивали некоторые химические свойства полипептида, например его основной характер(кобрамин), третьи присваивали фракции цифровое или буквенное обозначение. только в последние годы установлено близкое сходство в химической структуре этих полипептидов. Были получены доказательства, гемолитическая, цитотоксическая, кардиотоксическая и другие виды активности присущи большинству этих токсинов. Поэтому группу основных полипептидов, не обладающих специфической нейротоксической активностью, но эффективно действующих на биологические мембраны, назвали мембранно-активными полипептидами(МАП).

Основываясь на сравнительном анализе первичной структуры и физиологического действия, показавших большое сходство нейротоксических полипептидов между собой, их объединили общим термином - нейротоксин. Таким образом, все выделенные до настоящего времени из яда змей семейства Elapidae токсические полипептиды не обладающие энзиматическими свойствами и по механизму действия разделяются на три группы. К первой группе относятся полипептиды, избирательно и специфически блокирующие холинорецепторы субсинаптической мембраны нервно - мышечного соединения, - постсинаптические нейротоксины(пост-НТ). Вторая группа представлена полипептидами, действующие избирательно на пресинаптические окончания мионевральных синапсов и нарушающими процесс высвобождения ацетилхолина - пресинаптические нейротоксины (пре-НТ).

В третью группу включены полипептиды, активно воздействующие на мембранные структуры клеток, в том числе возбудимых, вызывая их деполяризацию - мембранно-активные полипептиды(МАП).

2. Химия постсинаптических нейротоксинов

Несмотря на то, что по своим фармакологическим свойствам пост - НТ, выделенные из яда кобр, близки, с точки зрения химического строения они могут быть разделены на два типа.

К типу 1 относятся пост - НТ, представляющую собой простую полипептидную цепочку, состоящую из 60-62 остатков аминокислот, имеющих 4 дисульфидных мостика (Рис 1. А) и обладающих основными своиствами, молекулярный вес около 7000 (пост - НТ- 1).

К типу 2 относятся пост - НТ, состоящие из 71-74 остатков аминокислот, имеющие 5 дисульфидных мостика (Рис 1, Б), молекулярный вес около 8000 (пост - НТ-2).

Рис 1. Первичная структура нейротоксина II (А) и нейротоксина I (Б) из яда среднеазиатской кобры

Пост - НТ-1 построены из 15 общих аминокислотных остатков, в их составе, как правило, отсутствует Ала, Мет и Фен. Напротив, а пост - НТ-2 аланин встречается. Интересной особенностью яда среднеазиатской кобры является присутствие в нем нейротоксинов обоих типов. Причем в нейротоксине, содержащем 73 аминокислотных остатка, Арг или Лиз 51, характерные для всех пост - НТ-2 замещены на Глу.

Насыщенность пост - НТ 1 и 2 дисульфидными связями наводит на мысль об их важном функциональном значении в поддержании биологически активной конформации молекулы. Восстановление дисульфидных связей приводит к потере 92% активности пост - НТ-1 и 50% пост - НТ-2. повторное окисление восстанавливает первоначальную активность нейротоксинов. По-видимому, большая устойчивость пост - НТ-2 к химическим воздействиям связано с наличием пятой дисульфидной связи, стабилизирующей участок полипептидной цепи. В тоже время у пост - НТ-1 этот же участок молекулы наиболее удлинен и лишен дисульфидных мостиков. Наличие мостиков обуславливает устойчивость пост - НТ и к термическому воздействию. Так, в кислой среде пост - НТ выдерживают нагревание до 100°С в течение 30 минут без заметной потери активности или обработку 8М мочевиной в течение 24 часов, но инактивируется щелочами.

Расшифровка первичной структуры нейротоксических полипептидов позволила поставить вопрос о локализации и строении активного центра молекулы, вступающего в связь с холиновым рецептором. Изучение строения этих полипептидов указывает на наличие в молекулах нейротоксинов как α так и β-структур. Центральная часть молекулы пост -НТ -1 свободная от дисульфидных связей, может обладать большей α-спирализацией. Кроме того, гидрофильный характер большинства боковых цепей аминокислотных остатков, составляющих последовательность от позиций 24-25 до положения 39-40, может обусловить проекцию этой петли на внешнюю сторону молекулы, поэтому не исключено, что активный центр локализуется в этом участке.

Важное значение имеет анализ местоположения и химическая модификация инвариантных аминокислот, встречающихся в гомологичных нейротоксинах в одних и тех же участках. Эти аминокислоты, сохранившиеся в процессе эволюции в одинаковых участках полипептидной цепи, могут участвовать в организации активного центра или обеспечивать поддержание активной конформации молекулы. Наличие постоянных аминокислот требует наличие инвариантного триплетного генного кода в молекуде ДНК, необходимого для синтеза данной аминокислотной последовательности.

Поскольку мишенью для пост - НТ,так же как и для ацетилхолина, является холинорецептор, то видимо активные участки нейротоксинов должны иметь сходство с четвертичной аммониевой и карбонильной группами ацетилхолина. Было установлено, что свободные аминогруппы, в том числе и N-концевые, не являются облигатными для обеспечения токсической активности. Ацитилирование 6 аминогрупп в нейротоксине из яда таиландской кобры привело к потере 1/3 активности.

Можно было предполагать, что карбонильные группы пептидного состава всегда присутствующие в молекуле пост - НТ могут иметь значение при обеспечении токсичности. Однако они малодоступны в реакции взаимодействия с рецептором. В большей степени отвечают этому требованию боковые группы боковых цепей инвариантных аспарагиновой кислоты и аспарагина. Модификация аспарагиновой кислоты метиловым эфиром глицина приводит к потере активности на 75% от первоначального значения.

Необратимое связывание между пост - НТ и холинорецептором нельзя объяснить только взаимодействием гуанидиновых и карбонильных групп пост - НТ с соответствующими участками рецептора. Их взаимодействие должно носить в основном электростатический характер, однако, комплекс рецептор - токсин не диссоциирует в концентрированных солевых растворах. Вероятно эти две функциональные группы служат «участками узнавания» при первичном контакте пост - НТ и рецептора. Конечное же необратимое связывание обуславливается протеин - протеиновым взаимодействием, включающие уже другие участки пост - НТ и холинорецептора.

3. Химия пресинаптических нейротоксинов

Нейротоксины второй группы,пресинаптические нейротоксины (пре - НТ), редко встречаются в змеиных ядах. Только некоторые из них выделены в очищенном виде и изучены. В семействе Elapidae пресинаптические НТ обнаружении в яде австралийского тайпана - тайпоксин, австралийской тигровой змеи - нотексин, и в яде крайта - β-бунгаротоксин. Кротоксин - нейротоксин яда гремучих змей обладает преимущественным пресинаптическим действием на нервно - мышечные соединения у амфибий и постсинаптическим у млекопитающих. в отличие от пост - НТ нейротоксины 2 группы построены из большего числа аминокислотных остатков и соответственно имеют больший молекулярный вес. Кроме того некоторые из них являются комплексом состоящим из субъединиц.

Одним из первых пре - НТ, полученных с помощью зонального электрофореза на крахмальном геле и в дальнейшем очищенных хроматографией на КМ-сефадексе с повторной рехроматографией, был β-бунгаротоксин. Β-бунгаротоксин построен приблизительно из 179 аминокислотных остатков, среди которых преобладают аспарагиновая кислота(22 остатка), глицин (16), лизин (13),аргинин (14),тирозин (13). Наличие 20 остатков цистина указывает, что молекула β-бунгаротоксина стабилизированы по крайней мере 10 сульфидными связями. Молекулярная масса нейротоксина 28500.

Предполагали, что β-бунгаротоксин лишен энзиматических свойств и является гомогенным. Однако установили, что β-бунгаротоксин состоит из двух субьединиц с молекулярным весом 8800 и 12400, изучая влияния β-бунгаротоксина на окислительное фосфолирирование в митохондриях нервных окончаний, пришли к выводу о наличии у токсина фосфолипазной активности.

Нотексин был получен ионообменной хроматографией в градиенте ацетата аммония. Основной нейротоксический компонент нотексина, составляющий 6% сырого неочищенного яда, выделен в виде препарата, содержащего 27% нотексина путем повторного хроматографирования.

4. Действие ядов на передачу нервно-мышечную передачу

Механизм нарушения передачи возбуждения в мионевральном синапсе под влияние змеиных ядов наиболее изучен. Уже первые наблюдения за картиной гибели отравленного животного, в которой доминировали симптомы паралича скелетной и дыхательной мускулатуры, вызвали необходимость изучения этого феномена в строгих лабораторных условиях. Многочисленными опытами на изолированных нервно-мышечных препаратах было показано, что змеиные яды блокируют передачу возбуждения с нерва на мышцу, снижают возбудимость на прямую и непрямую стимуляцию и вызывают деполяризацию нервных и мышечных мембран.

Угнетение нервно-мышечной передачи под действием яда может реализоваться с помощью двух механизмов. Один из них связан с блокирующим действием яда на концевую пластинку. В основе второго лежит деполяризующее действие на возбудимые мембраны. Однако при использовании цельного яда трудно отдифференцировать эти два механизма, так как его деполяризующее действие приводит к блокированию распространяющегося возбуждения в нервных волокнах, а в высоких концентрациях яд вызывает мышечную контрактуру. Яд предупреждает деполяризующее действие ацетилхолина на изолированные мышцы, в то время как ацетилхолинэстеразные соединения снижают его блокирующий эффект.

В опытах кротоксин блокировал мышечное сокращение на непрямую стимуляцию и не оказывал влияния на мембранный потенциал. Однако изучение действия ядов двух разновидностей (с кротамином и без него) сообщили о практически необратимом блокирующем действии на нервно мышечную передачу у кошек и крыс яда без кротамина, причем как на мышечные мембраны, так и на специфические рецепторы постсинаптической мембраны. Нервно-мышечный блок под влиянием яда, содержащего кротамин, достигался путем деполяризации мышечных мембран. Яд гадюковых также способен нарушать нервно-мышечную передачу, вызывая периферический паралич, обусловленный необратимой блокадой специфических ацетилхолиновых рецепторов. Он угнетает также электрическую активность мышечных волокон. Иммунохимический анализ показал наличие в яде белковой фракции, сходной с постсинаптическим α-токсином из яда черношейной кобры.

В институте биоорганической химии им. академиков М.М. Шемякина <#"justify">5. Постсинаптические нейротоксины (пост - НТ)

В отличие от цельного яда кобры пост - НТ избирательно блокируют передачу возбуждения в нервно-мышечном соединении, не оказывая влияния на электрические свойства нерва и мышцы. Инкубация в течение часа изолированных нервно-мышечных препаратов в растворе, содержащем пост - НТ в концентрации около 1 мкг/мл, приводит к прогрессивному уменьшению амплитуды потенциала концевой пластинки - ПКП. Угнетающий эффект возрастает при увеличении частоты стимуляции, одновременно уменьшается амплитуда ПКП без существенных изменений их частоты. Даже в высоких концентрациях пост - НТ не оказывали влияния на потенциалы покоя и мышцы и моторных терминалей.

Наибольшей чувствительностью к действию пост - НТ обладают холинорецепторные мембраны скелетной мускулатуры позвоночных животных. В то же время соматическая мускулатура морских моллюсков и сердце миноги устойчивы к действию нейротоксинов кобры. Видовые различия в чувствительности холинорецепторов на разнообразных представителях позвоночных (лягушки, цыплята, котята, крысы). Было высказано предположение, что пост - НТ не являются прямыми конкурентами ацетилхолина за активный центр холинорецептора.

6. Пресинаптические нейротоксины (пре - НТ)

Нейротоксины с пресинаптическим характером действия избирательно поражают механизм высвобождения ацетилхолина, не влияя на чувствительность к медиатору постсинаптических структур. Обработка изолированного нервно-мышечного препарата β-бунгаротоксином после начального периода увеличения частоты приводит к полному устранению ПКП. Скорость наступления угнетающего эффекта зависит как от концентрации пре - НТ, так и от частоты стимуляции. Также была установлена зависимость времени наступления блока нервно-мышечной передачи от температуры окружающей среды. Так, тайпоксин (1мкг/мл) при температуре 37 °С вызывал угнетение препарата в течение часа, при снижении температуры до 28 °С проводимость сохранялась до 4 часов инкубации. Пре - НТ не снижают ответ изолированных мышц на экзогенный ацетилхолин и не влияют на проведения возбуждения по нервным терминалям. Другие доказательства избирательного пресинаптического характера действия β-бунгаротоксина были получены на лишенной нервных окончаний культуре тканей, полученных из миобластов 10 дневных эмбрионов цыпленка. Предварительная инкубация α-бунгаротоксином полностью устраняла деполяризацию вызванную последующим введением в среду ацетилхолина. В этих условиях β-бунгаротоксин оказался не эффективным. На поздних стадиях действия β-бунгаротоксина наблюдается разрушение везикул с ацетилхолином вплоть до полного их исчезновения. Отмечается также и вакуолизация митохондрий моторных нервных терминалей.

Действие β-бунгаротоксина сходно с действием токсины ботулизма, также поражающего механизм высвобождения ацетилхолина из нервных окончаний. Однако имеются и различия: токсин ботулизма не вызывает начального увеличения ПКП; в отличие от токсина ботулизма β-бунгаротоксин взаимодействует только с холинэргическими окончаниями; при действии токсина ботулизма не замечены изменения в пресинаптической области.

На синаптосомах из мозга крысы выявлена способность β-бунгаротоксина снижать накопление ГАМК, серотонина, норадреналина и холина. Поскольку β-бунгаротоксин в основном вытесняет уже накопленные нейромедиаторы, можно предположить, что его действие связано с поражение процесса хранения, а не транспорта медиаторов.

Заключение

Механизм действия змеиных ядов еще окончательно не расшифрован учеными. Но прозрачная капелька яда, попав в кровь, разносится ею по всему организму и в определенной дозе оказывает благоприятный эффект на организм больного. Установлено, что небольшие количества яда кобры обладают болеутоляющим действием и могут даже использоваться как заменитель морфия у больных, страдающих злокачественными новообразованиями. При этом в отличие от морфия змеиный яд действует более длительно и, что самое главное, не вызывает привыкания. Кроме того, созданы препараты на основе яда кобры, улучшающие общее состояние больных, страдающих бронхиальной астмой, эпилепсией, стенокардией.

Потребность в змеином яде возрастает из года в год и змеепитомники, созданные в ряде районов нашей страны, пока еще не могут удовлетворить эту потребность. Поэтому назрела необходимость охранять ядовитых змей в природных условиях, а также добиваться их размножения в неволе.

Следует помнить, что в руках неопытных людей змеиный яд становится не союзником в борьбе за сохранение здоровья, а опасным врагом и может вызвать тяжелые отравления. О необходимости правильно подбирать дозу лечебного вещества говорил еще Теофраст Парацельс, утверждая, что «...все есть яд, ничто не лишено ядовитости, и все есть лекарство. Одна только доза делает вещество ядом или лекарством». Это изречение знаменитого ученого не потеряло своего смысла и в наши дни и, пользуясь ядами змей, больные обязаны строго соблюдать предписания лечащего врача.

Яды змей, как известно, опасны для многих видов млекопитающих. Но среди более низко организованных животных, особенно среди насекомых, известны виды, не восприимчивые к действию змеиного яда, что позволяет использовать их в качестве противоядий.

Подводя итог рассмотрению круга вопросов, охватывающих особенности химического строения и механизмов действия ядов, нельзя не упомянуть что Природа - этот искуснейший экспериментатор - дала в руки исследователей уникальные инструменты для изучения фундаментальных вопросов строения и функционирования живой клетки.

Зоотоксины - прекрасные модели для молекулярной биологии, позволяющие решать вопросы взаимосвязи структуры и функции в биомолекулах.

Список литературы

1. Орлов Б.Н « Ядовитые животные и растения СССР». М.: Высшая школа, 1990г. - 272 с.

Г.И. Оксендендлер «Яды и противоядия» Л.: Наука, 1982. - 192 с

Е. Дунаев, И. Кауров «Рептилии. Амфибии». М.: Астрель, 2010г. - 180с.

Б.С Туниев, Н.Л. Орлов «Змеи Кавказа». М.: Товарищество научных изданий КМК, 2009. - 223с.

Www.floranimal.ru

Http://www.ncbi.nlm.nih.gov/pubmed

Некоторые вещества могут оказывать крайне негативное воздействие на здоровье человека. Естественные или синтетические яды поражают почки, печень, сердце, повреждают кровеносные сосуды, вызывая кровотечения, или действуют на клеточном уровне. Нейротоксинами называют вещества, которые поражают нервные волокна и головной мозг, а результаты действия таких токсинов - нейротоксическими расстройствами. Воздействие подобного рода ядов может быть как отсроченным, так и вызывать острые состояния.

Что такое нейротоксины и где применяются отравляющие вещества

Нейротоксинами могут выступать химические вещества, лекарственные средства, вызывающие анестезию, антисептики, пары металлов, агрессивные моющие средства, пестициды и инсектициды. Некоторые живые организмы способны вырабатывать нейротоксины в ответ на угрозу иммунной системе, многочисленные ядовитые вещества присутствуют в окружающей среде.

Согласно данным научных исследований, обобщенным в публикации авторитетного еженедельного медицинского журнала ”The Lancet”, повреждать нервную систему человека могут около двухсот токсинов. Позднее (по изучению данных Национального Института Профессиональной Безопасности) появилась необходимость добавить к опубликованному списку еще столько же ядовитых веществ, тем или иным образом, оказывающих негативное влияние на ЦНС.

В последнем случае повреждение нервных волокон сочеталось с поражением сопутствующих органов и систем, а симптомы нейротоксического расстройства появлялись при превышении допустимых пределов воздействия.

Так, список химических веществ, которые можно отнести к нейротоксинам, расширяется в зависимости от того, каких критериев придерживается конкретное издание или автор.

Получить отравление нейротоксином можно при вдыхании ядовитых паров, повышении допустимой концентрации в крови или употреблении в пищу продуктов, насыщенных большим количеством токсичных веществ. Многие ядовитые вещества присутствуют в окружающей среде, товарах массового потребления, бытовых химикатах. Нейротоксины применяются в косметологии, медицине и промышленности.

В чем заключается нейротоксическое воздействие на организм

Нейротоскическое воздействие распространяется в первую очередь на головной мозг и нервные волокна. Нейтрализация работы клеток в нервной системе может приводить к параличу мышц, возникновению острой аллергической реакции, воздействует на общее психическое состояние человека. В тяжелых случаях отравление может вызвать кому и закончиться летальным исходом.

Ядовитые вещества подобного рода впитываются в нервные окончания, передаются в клетки и нарушают жизненно важные функции. Механизмы естественном детоксикации организма практически бессильны против нейротоксинов: в печени, например, основная функциональная особенность которой заключается в выведении вредных веществ, большинство нейротоксинов вследствие своего специфического характера повторно всасываются нервными волокнами.

Нейротоксический яд может осложнять течение любой болезни, что затрудняет окончательную диагностику и своевременное лечение.

Установление точного диагноза в обязательном порядке включает в себя определение предполагаемого источника заражения, изучение истории контактов с потенциальным ядом, выявление полной клинической картины и проведение лабораторных тестов.

Классификация наиболее известных представителей нейротоксинов

Медицинские источники разделяют нейротоксины на ингибиторы каналов, нервно-паралитические отравляющие вещества и нейротоксичные препараты. По происхождению различаются отравляющие вещества на полученные из внешней среды (экзогенные) и производимые организмом (эндогенные).

Классификация нейротоксинов, отравление которыми есть вероятность получить на производстве и в быту, включает в себя три группы наиболее распространенных веществ:

  1. Тяжелые металлы. Ртуть, кадмий, свинец, сурьма, висмут, медь и другие вещества быстро всасываются в пищеварительный тракт, разносятся с кровотоком по всем жизненно важным органам и оседают в них.
  2. Биотоксины. К биотоксинам относятся сильнодействующие яды, которые вырабатываются в частности морскими обитателями и пауками. Вещества могут проникать механическим путем (при укусе или уколе) или при употреблении в пищу ядовитых животных. Кроме того, к биотоксинам относятся бактерии ботулизма.
  3. Ксенобиотики. Отличительная черта данной группы нейротоксинов состоит в пролонгированном воздействии на организм человека: период полураспада диоксина, например, составляет от 7 до 11 лет.

Симптомы поражения нейротоксинами

Нейротоксические расстройства, вызванные ядовитыми веществами, характеризуются рядом симптомов, типичных для отравлений в принципе, и специфическими признаками, возникающими при интоксикации определенным соединением.

Интоксикация тяжелыми металлами

Так, у больных возникают следующие признаки интоксикации тяжелыми металлами:

  • дискомфорт в животе;
  • вздутие, диарея или запоры;
  • тошнота и периодическая рвота.

При этом отравление конкретным металлом имеет свои отличительные особенности. Так, при интоксикации ртутью ощущается металлический привкус во рту, характерно повышенное слюноотделение и набухание лимфатических узлов, а отличается сильным кашлем (иногда с кровью), слезотечением, раздражением слизистых оболочек дыхательных путей.

Тяжелым случаем является : развивается анемия, кожные покровы становятся синюшными, быстро нарушается работа печени и почек.

Отравление биотоксинами

При отравлении биотоксинами в числе первых признаком интоксикации могут возникать:

  • повышенное слюноотделение, онемение языка, потеря чувствительности ног и рук (характерно для отравления тетродотоксином, содержащимся в рыбе фугу);
  • нарастающие боли в животе, тошнота и рвота, нарушения стула, “мушки” перед глазами и дыхательная недостаточность (интоксикация ботулотоксином);
  • сильные боли в сердце, гипоксия, параличи внутренних мышц (состояние, подобное сердечному приступу возникает при отравлении батрахотоксином, содержащимся в железах некоторых видов лягушек).

Интоксикация ксенобиотиками

Нейротоксичный яд антропогенного происхождения опасен тем, что симптомы интоксикации могут появляться в длительной перспективе, что приводит к хроническому отравлению.


Поражение формальдегидом или диоксинами - побочными продуктами производства пестицидов, бумаги, пластмасс и так далее - сопровождается следующими признаками:

  • упадок сил, быстрая утомляемость, бессонница;
  • боль в животе, потеря аппетита и истощение;
  • раздражение слизистых оболочек ротовой полости, глаз и дыхательных путей;
  • тошнота, рвота с кровью, диарея;
  • нарушение координации движений;
  • тревожность, бред, чувство страха.

Особенности отравления нейротоксинами

Отличительной особенностью нейротоксинов является поражение нервной системы человека.

Так, состояние пациента характеризуется:

  • нарушениями координации движений;
  • замедлением мозговой активности;
  • нарушениями сознания, потерей памяти;
  • пульсирующей головной болью;
  • потемнением в глазах.

К общим признакам, как правило, добавляются симптомы отравления со стороны дыхательной, пищеварительной и сердечно-сосудистой систем. Конкретная клиническая картина зависит от источника интоксикации.

Профилактика интоксикации на производстве и в быту

Профилактика отравлений во многом зависит от характера потенциальной угрозы. Так, чтобы избежать интоксикации биотоксинами следует подвергать тщательной тепловой обработке продукты питания, избегать употребления в пищу просроченных или некачественных продуктов, предотвращать контакты с потенциально ядовитыми животными и растениями. Предотвратить отравление тяжелыми металлами можно, используя изделия из данных материалов строго по назначению,соблюдая меры безопасности при работе на вредных производствах и санитарные правила.

Нейротоксичность - это способность химических веществ, действуя на организм, вызывать нарушение структуры или функций нервной системы. Нейротоксичность присуща большинству известных веществ.

К числу нейротоксикантов относят вещества, для которых порог чувствительности нервной системы (отдельных её гистологических и анатомических образований) существенно ниже, чем других органов и систем, и в основе интоксикации которыми лежит поражение именно нервной системы.

Классификация ОВТВ нейротоксического действия :

1. Овтв вызывающие преимущественно функциональные нарушения центрального и периферического отделов нервной системы:

ОВТВ нервно-паралитического действия:

Действующие на холинореактивные синапсы;

Ингибиторы холинэстеразы: ФОС, карбаматы;

Пресинаптические блокаторы высвоб-я ацетилхолина: ботулотоксин.

Действующие на ГАМК – реактивные синапсы:

Ингибиторы синтеза ГАМК: производные гидразина;

Антагонисты ГАМК (ГАМК-литики): бициклофосфаты, норборнан;

Пресинаптические блокаторы высвобождения ГАМК: тетанотоксин.

Блокаторы Na – ионных каналов возбудимых мембран:

Тетродотоксин, сакситоксин.

ОВТВ писходислептического действия:

Эйфоригены: тетрагидроканнабиол, суфентанил, клонитазен;

Галлюциногены: диэтиламид лизергиновой кислоты (ДЛК);

Делириогены: произв-е хинуклединбензилата (BZO фенциклидин (сернил).

2. Овтв вызывающие органические повреждения нервной системы:

Таллий; - тетраэтилсвинец (ТЭС).

Таблица 6.

Токсичность некоторых отравляющих веществ

Наименование

Поражение через органы дыхания

LCt50 г мин/ м 3

ICt50 г мин/ м 3

Большинство промышленных токсикантов, пестицидов, лекарственных средств (применение которых возможно в качестве диверсионных агентов), занимают промежуточное положение между смертельно действующими отравляющими веществами и временно выводящими из строя. Различие значений их смертельных и выводящих из строя доз больше, чем у представителей первой подгруппы, и меньше, чем у представителей второй.

Отравляющие и высокотоксичные вещества нервно-паралитического действия

Действующие на холинореактивные синапсы, ингибиторы холинэстеразы

Фосфорорганические соединения

Фосфорорганические соединения нашли применение как инсектициды (хлорофос, карбофос, фосдрин, лептофос и др.), лекарственные препараты (фосфакол, армин и т.д.), наиболее токсичные представители группы приняты на вооружение армий целого ряда стран в качестве боевых отравляющих веществ (зарин, зоман, табун, Vx). Поражение ФОС людей возможно при авариях на объектах по их производству, при применении в качестве ОВ или диверсионных агентов. ФОС – производные кислот пятивалентного фосфора.

Все ФОС при взаимодействии с водой подвергаются гидролизу с образованием нетоксичных продуктов. Скорость гидролиза ФОС, растворенных в воде, различна (например, зарин гидролизуется быстрее, чем зоман, а зоман – быстрее, чем V-газы).

ФОВ образуют зоны стойкого химическиого заражения. Прибывающие из зоны заражения, пораженные ФОВ представляют реальную опасность для окружающих.

Токсикокинетика

Отравление происходит при вдыхании паров и аэрозолей, всасывании ядов в жидком и аэрозольном состоянии через кожу, слизистую глаз, с зараженной водой или пищей – через слизистую желудочно-кишечного тракта. ФОВ не обладают раздражающим действием на месте аппликации (слизистые оболочки верхних дыхательных путей и желудочно-кишечного тракта, конъюнктива глаз, кожа) и проникают в организм практически незаметно. Мало токсичные ФОС способны к относитльно продолжительному персистированию (карбофос – сутки и более). Наиболее токсичные представители, как правило, быстро гидролизуются, окисляются. Период полуэлиминации зарина и зомана составляют около 5 минут, Vх несколько больше. Метаболизм ФОС происходит во всех органах и тканях. Из организма выделяются только нетоксичные метаболиты веществ и потому выдыхаемый воздух, моча, кал не опасны для окружающих.

>>>> Чем опасны нейротоксические воздействия?

Чем опасны нейротоксические воздействия?

Ряд веществ может оказывать пагубное действие на нервные волокна, и такие вещества называют нейротоксинами, а результаты их действия – нейротоксическими расстройствами. Нейротоксины могут вызывать острые реакции или действовать отсрочено, превращая токсическое воздействие в хронический процесс.

В роли нейротоксинов могут выступать химические реагенты, анестетики, антисептики, моющие средства, пестициды, инсектициды, пары металлов, лекарственные средства с нейротоксичным побочным эффектом. Нейротоксическое действие может начаться при случайном попадании в систему дыхания, в кровь компонентов данных веществ и при превышении их допустимой концентрации в крови.

Нейротоксическое воздействие веществ на организм проявляется в ряде признаков:

  • Головные боли,
  • Головокружения,
  • Чувство дурноты,
  • Слабость мышц конечностей,
  • Нарушения равновесия,
  • Чувство онемения тканей,
  • Нарушения чувствительности тканей,
  • Замедление или нарушения рефлексов,
  • Нарушения сердечной деятельности (аритмии , тахикардия),
  • Нарушения зрения,
  • Нарушения дыхания,
  • Боли, сходные с корешковым синдромом ,
  • Нарушения двигательной активности,
  • Задержка мочеиспускания или недержание мочи,
  • Спутанность сознания.

Нейротоксические расстройства могут иметь обратимый характер и исчезать при прекращении действия нейротоксина, но могут и привести к необратимым повреждениям в организме.

Нейротоксическому воздействию можно подвергнуться:

  • на производстве химических веществ, долгое время находясь во вредной атмосфере,
  • при работах с удобрениями и инсектицидами в сельском хозяйстве и на частных дачных участках,
  • при проведении дезинфекций помещений, находясь в атмосфере, наполненной парами концентрированного дезинфектанта,
  • при ремонтных и строительных работах с лако–красочными средствами, клеями, растворителями в плохо проветриваемых помещениях,
  • находясь вблизи зоны горения с высокой концентрацией угарного газа,
  • Находясь в зоне химической техногенной катастрофы (аварийные выбросы).

Нейротоксические расстройства могут со временем трансформироваться в заболевания нервной системы и опорно – двигательного аппарата: миопатии , болезнь Паркинсона, снижение или потерю зрения, нарушение работы вестибулярного аппарата , умственную деградацию, тики, тремор.

Лечение нейротоксических расстройств построено на проведении дезинтоксикационных мероприятий по выведению из организма токсических веществ и снижению их концентрации в тканях, восстановлению водно – электролитного баланса, очистке крови от токсинов путем гемосорбции . При нейротоксикозе проводят симптоматическую терапию (противосудорожными препаратами, миорелаксантами, противовоспалительными препаратами, противоаллергическими препаратами) по устранению нарушений, появившихся в результате токсического воздействия. Приоритетное направление при лечении нейротоксических расстройств приобретает восстановление дыхательной активности, гемодинамики, предотвращение отека мозга. Далее проводится мониторинг пострадавших органов, назначается соответствующее лечение и восстанавливается двигательная активность.