Что означает знак в формуле. Из истории математических символов

Для обозначения геометрических фигур и их проекций, для отображения отношения между ними, а также для краткости записей геометрических предложений, алгоритмов решения задач и доказательства теорем в курсе используется геометрический язык , составленный из обозначений и символов, принятых в курсе математики (в частности, в новом курсе геометрии в средней школе).

Все многообразие обозначений и символов, а также связи между ними могут быть подразделены на две группы:

группа I - обозначения геометрических фигур и отношений между ними;

группа II обозначения логических операций, составляющие синтаксическую основу геометрического языка.

Ниже приводится полный список математических символов, используемых в данном курсе. Особое внимание уделяется символам, которые применяются для обозначения проекций геометрических фигур.

Группа I

СИМВОЛЫ, ОБОЗНАЧАЮЩИЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ И ОТНОШЕНИЯ МЕЖДУ НИМИ

А. Обозначение геометрических фигур

1. Геометрическая фигура обозначается - Ф.

2. Точки обозначаются прописными буквами латинского алфавита или арабскими цифрами:

А, В, С, D, ... , L, М, N, ...

1,2,3,4,...,12,13,14,...

3. Линии, произвольно расположенные по отношению к плоскостям проекций, обозначаются строчными буквами латинского алфавита:

а, b, с, d, ... , l, m, n, ...

Линии уровня обозначаются: h - горизонталь; f- фронталь.

Для прямых используются также следующие обозначения:

(АВ) - прямая, проходящая через точки А а В;

[АВ) - луч с началом в точке А;

[АВ] - отрезок прямой, ограниченный точками А и В.

4. Поверхности обозначаются строчными буквами греческого алфавита:

α, β, γ, δ,...,ζ,η,ν,...

Чтобы подчеркнуть способ задания поверхности, следует указывать геометрические элементы, которыми она определяется, например:

α(а || b) - плоскость α определяется параллельными прямыми а и b;

β(d 1 d 2 gα) - поверхность β определяется направляющими d 1 и d 2 , образующей g и плоскостью параллелизма α.

5. Углы обозначаются:

∠ABC - угол с вершиной в точке В, а также ∠α°, ∠β°, ... , ∠φ°, ...

6. Угловая: величина (градусная мера) обозначается знаком , который ставится над углом:

Величина угла АВС;

Величина угла φ.

Прямой угол отмечается квадратом с точкой внутри

7. Расстояния между геометрическими фигурами обозначаются двумя вертикальными отрезками - ||.

Например:

|АВ| - расстояние между точками А и В (длина отрезка АВ);

|Аа| - расстояние от точки А до линии a;

|Аα| - расстояшие от точки А до поверхности α;

|аb| - расстояние между линиями а и b;

|αβ| расстояние между поверхностями α и β.

8. Для плоскостей проекций приняты обозначения: π 1 и π 2 , где π 1 - горизонтальная плоскость проекций;

π 2 -фрюнтальная плоскость проекций.

При замене плоскостей проекций или введении новых плоскостей последние обозначают π 3 , π 4 и т. д.

9. Оси проекций обозначаются: х, у, z, где х - ось абсцисс; у - ось ординат; z - ось аппликат.

Постояшную прямую эпюра Монжа обозначают k.

10. Проекции точек, линий, поверхностей, любой геометрической фигуры обозначаются теми же буквами (или цифрами), что и оригинал, с добавлением верхнего индекса, соответствующего плоскости проекции, на которой они получены:

А", В", С", D", ... , L", М", N", горизонтальные проекции точек; А", В", С", D", ... , L", М", N", ... фронтальные проекции точек; a" , b" , c" , d" , ... , l", m" , n" , - горизонтальные проекции линий; а" ,b" , с" , d" , ... , l" , m" , n" , ... фронтальные проекции линий; α", β", γ", δ",...,ζ",η",ν",... горизонтальные проекции поверхностей; α", β", γ", δ",...,ζ",η",ν",... фронтальные проекции поверхностей.

11. Следы плоскостей (поверхностей) обозначаются теми же буквами, что и горизонталь или фронталь, с добавлением подстрочного индекса 0α , подчеркивающего, что эти линии лежат в плоскости проекции и принадлежат плоскости (поверхности) α.

Так: h 0α - горизонтальный след плоскости (поверхности) α;

f 0α - фронтальный след плоскости (поверхности) α.

12. Следы прямых (линий) обозначаются заглавными буквами, с которых начинаются слова, определяющие название (в латинской транскрипции) плоскости проекции, которую пересекает линия, с подстрочным индексом, указывающим принадлежность к линии.

Например: H a - горизонтальный след прямой (линии) а;

F a - фронтальный след прямой (линии) a.

13. Последовательность точек, линий (любой фигуры) отмечается подстрочными индексами 1,2,3,..., n:

А 1 , А 2 , А 3 ,...,А n ;

a 1 , a 2 , a 3 ,...,a n ;

α 1 , α 2 , α 3 ,...,α n ;

Ф 1 , Ф 2 , Ф 3 ,...,Ф n и т. д.

Вспомогательная проекция точки, полученная в результате преобразования для получения действительной величины геометрической фигуры, обозначается той же буквой с подстрочным индексом 0:

A 0 , B 0 , С 0 , D 0 , ...

Аксонометрические проекции

14. Аксонометрические проекции точек, линий, поверхностей обозначаются теми же буквами, что и натура с добавлением верхнего индекса 0:

А 0 , В 0 , С 0 , D 0 , ...

1 0 , 2 0 , 3 0 , 4 0 , ...

a 0 , b 0 , c 0 , d 0 , ...

α 0 , β 0 , γ 0 , δ 0 , ...

15. Вторичные проекции обозначаются путем добавления верхнего индекса 1:

А 1 0 , В 1 0 , С 1 0 , D 1 0 , ...

1 1 0 , 2 1 0 , 3 1 0 , 4 1 0 , ...

a 1 0 , b 1 0 , c 1 0 , d 1 0 , ...

α 1 0 , β 1 0 , γ 1 0 , δ 1 0 , ...

Для облегчения чтения чертежей в учебнике при оформлении иллюстративного материала использованы несколько цветов, каждый из которых имеет определенное смысловое значение: линиями (точками) черного цвета обозначены исходные данные; зеленый цвет использован для линий вспомогательных графических построений; красными линиями (точками) показаны результаты построений или те геометрические элементы, на которые следует обратить особое внимание.

Б. Символы, обозначающие отношения между геометрическими фигурами
№ по пор. Обозначение Содержание Пример символической записи
1 Совпадают (АВ)≡(CD) - прямая, проходящая через точки А и В,
совпадает с прямой, проходящей через точки С и D
2 Конгруентны ∠ABC≅∠MNK - угол АВС конгруентен углу MNK
3 Подобны ΔАВС∼ΔMNK - треугольники АВС и MNK подобны
4 || Параллельны α||β - плоскость α параллельна плоскости β
5 Перпендикулярны а⊥b - прямые а и b перпендикулярны
6 Скрещиваются с d - прямые с и d скрещиваются
7 Касательные t l - прямая t является касательной к линии l.
βα - плоскость β касательная к поверхности α
8 Отображаются Ф 1 →Ф 2 - фигура Ф 1 отображается на фигуру Ф 2
9 S Центр проецирования.
Если центр проецирования несобственная точка,
то его положение обозначается стрелкой,
указывающей направление проецирования
-
10 s Направление проецирования -
11 P Параллельное проецирование р s α Параллельное проецирование - параллельное проецирование
на плоскость α в направлении s

В. Обозначения теоретико-множественные
№ по пор. Обозначение Содержание Пример символической записи Пример символической записи в геометрии
1 M,N Множества - -
2 A,B,C,... Элементы множества - -
3 { ... } Состоит из... Ф{A, B, C,... } Ф{A, B, C,... } - фигура Ф состоит из точек А, В,С, ...
4 Пустое множество L - ∅ - множество L пустое (не содержит элементов) -
5 Принадлежит, является элементом 2∈N (где N - множество натуральных чисел) -
число 2 принадлежит множеству N
А ∈ а - точка А принадлежит прямой а
(точка А лежит на прямой а)
6 Включает, cодержит N⊂М - множество N является частью (подмножеством) множества
М всех рациональных чисел
а⊂α - прямая а принадлежит плоскости α (понимается в смысле:
множество точек прямой а является подмножеством точек плоскости α)
7 Объединение С = A U В - множество С есть объединение множеств
A и В; {1, 2. 3, 4,5} = {1,2,3}∪{4,5}
ABCD = ∪ [ВС] ∪ - ломаная линия, ABCD есть
объединение отрезков [АВ], [ВС],
8 Пересечение множеств М=К∩L - множество М есть пересечение множеств К и L
(содержит в себе элементы, принадлежащие как множеству К, так и множеству L).
М ∩ N = ∅- пересечение множеств М и N есть пустое множество
(множества М и N не имеют общих элементов)
а = α ∩ β - прямая а есть пересечение
плоскостей α и β
а ∩ b = ∅ - прямые а и b не пересекаются
(не имеют общих точек)

Группа II СИМВОЛЫ, ОБОЗНАЧАЮЩИЕ ЛОГИЧЕСКИЕ ОПЕРАЦИИ
№ по пор. Обозначение Содержание Пример символической записи
1 Конъюнкция предложений; соответствует союзу "и".
Предложение (р∧q) истинно тогда и только тогда,когда р и q оба истинны
α∩β = { К:K∈α∧K∈β} Пересечение поверхностей α и β есть множество точек (линия),
состоящее из всех тех и только тех точек К, которые принадлежат как поверхности α, так и поверхности β
2 Дизъюнкция предложений; соответствует союзу "или". Предложение (p∨q)
истинно, когда истинно хотя бы одно из предложений р или q (т. е. или р, или q, или оба).
-
3 Импликация - логическое следствие. Предложение р⇒q означает: "если р, то и q" (а||с∧b||с)⇒a||b. Если две прямые параллельны третьей, то они параллельны между собой
4 Предложение (р⇔q) понимается в смысле: "если р, то и q; если q, то и р" А∈α⇔А∈l⊂α.
Точка принадлежит плоскости, если она принадлежит некоторой линии, принадлежащей этой плоскости.
Справедливо также и обратное утверждение: если точка принадлежит некоторой линии,
принадлежащей плоскости, то она принадлежит и самой плоскости
5 Квантор общности, читается: для всякого, для всех, для любого.
Выражение ∀(x)P(x) означает: "для всякого x: имеет место свойство Р(х) "
∀(ΔАВС)( = 180°) Для всякого (для любого) треугольника сумма величин его углов
при вершинах равна 180°
6 Квантор существования, читается: существует.
Выражение ∃(х)P(х) означает: "существует х, обладающее свойством Р(х)"
(∀α)(∃a).Для любой плоскости α существует прямая а, не принадлежащая плоскости α
и параллельная плоскости α
7 ∃1 Квантор единственности существования, читается: существует единственное
(-я, -й)... Выражение ∃1(x)(Рх) означает: "существует единственное (только одно) х,
обладающее свойством Рх"
(∀ А, В)(А≠B)(∃1а)(а∋А, В) Для любых двух различных точек А и В существует единственная прямая a,
проходящая через эти точки.
8 (Px) Отрицание высказывания P(x) аb(∃α )(α⊃а, Ь).Если прямые а и b скрещиваются, то не существует плоскости а, которая содержит их
9 \ Отрицание знака
≠ -отрезок [АВ] не равен отрезку .а?b - линия а не параллельна линии b
из двух), 3 > 2 (три больше двух) и т.п.

Развитие математической символики было тесно связано с общим развитием понятий и методов математики. Первыми Знаки математические были знаки для изображения чисел - цифры , возникновение которых, по-видимому, предшествовало письменности. Наиболее древние системы нумерации - вавилонская и египетская - появились ещё за 3 1 / 2 тысячелетия до н. э.

Первые Знаки математические для произвольных величин появились много позднее (начиная с 5-4 вв. до н. э.) в Греции. Величины (площади, объёмы, углы) изображались в виде отрезков, а произведение двух произвольных однородных величин - в виде прямоугольника, построенного на соответствующих отрезках. В «Началах» Евклида (3 в. до н. э.) величины обозначаются двумя буквами - начальной и конечной буквами соответствующего отрезка, а иногда и одной. У Архимеда (3 в. до нашей эры) последний способ становится обычным. Подобное обозначение содержало в себе возможности развития буквенного исчисления. Однако в классической античной математике буквенного исчисления создано не было.

Начатки буквенного изображения и исчисления возникают в позднеэллинистическую эпоху в результате освобождения алгебры от геометрической формы. Диофант (вероятно, 3 в.) записывал неизвестную (х ) и её степени следующими знаками:

[ - от греческого термина dunamiV (dynamis - сила), обозначавшего квадрат неизвестной, - от греческого cuboV (k_ybos) - куб]. Справа от неизвестной или её степеней Диофант писал коэффициенты, например 3х 5 изображалось

(где = 3). При сложении Диофант приписывал слагаемые друг к другу, для вычитания употреблял специальный знак ; равенство Диофант обозначал буквой i [от греческого isoV (isos) - равный]. Например, уравнение

(x 3 + 8x ) - (5x 2 + 1) = х

У Диофанта записалось бы так:

(здесь

означает, что единица не имеет множителя в виде степени неизвестного).

Несколько веков спустя индийцы ввели различные Знаки математические для нескольких неизвестных (сокращения наименований цветов, обозначавших неизвестные), квадрата, квадратного корня, вычитаемого числа. Так, уравнение

3х 2 + 10x - 8 = x 2 + 1

В записи Брахмагупты (7 в.) имело бы вид:

Йа ва 3 йа 10 ру 8

Йа ва 1 йа 0 ру 1

(йа - от йават - тават - неизвестное, ва - от варга - квадратное число, ру - от рупа - монета рупия - свободный член, точка над числом означает вычитаемое число).

Создание современной алгебраической символики относится к 14-17 вв.; оно определялось успехами практической арифметики и учения об уравнениях. В различных странах стихийно появляются Знаки математические для некоторых действий и для степеней неизвестной величины. Проходят многие десятилетия и даже века, прежде чем вырабатывается тот или иной удобный символ. Так, в конце 15 и. Н. Шюке и Л. Пачоли употребляли знаки сложения и вычитания

(от лат. plus и minus), немецкие математики ввели современные + (вероятно, сокращение лат. et) и -. Ещё в 17 в. можно насчитать около десятка Знаки математические для действия умножения.

Различны были и Знаки математические неизвестной и её степеней. В 16 - начале 17 вв. конкурировало более десяти обозначений для одного только квадрата неизвестной, например се (от census - латинский термин, служивший переводом греческого dunamiV, Q (от quadratum), , A (2), , Aii, aa , a 2 и др. Так, уравнение

x 3 + 5x = 12

имело бы у итальянского математика Дж. Кардано (1545) вид:

у немецкого математика М. Штифеля (1544):

у итальянского математика Р. Бомбелли (1572):

французского математика Ф. Виета (1591):

у английского математика Т. Гарриота (1631):

В 16 и начале 17 вв. входят в употребление знаки равенства и скобки: квадратные (Р. Бомбелли , 1550), круглые (Н. Тарталья , 1556), фигурные (Ф. Виет , 1593). В 16 в. современный вид принимает запись дробей.

Значительным шагом вперёд в развитии математической символики явилось введение Виетом (1591) Знаки математические для произвольных постоянных величин в виде прописных согласных букв латинского алфавита В, D, что дало ему возможность впервые записывать алгебраические уравнения с произвольными коэффициентами и оперировать ими. Неизвестные Виет изображал гласными прописными буквами А, Е,... Например, запись Виета

В наших символах выглядит так:

x 3 + 3bx = d.

Виет явился творцом алгебраических формул. Р. Декарт (1637) придал знакам алгебры современный вид, обозначая неизвестные последними буквами лат. алфавита х, у, z, а произвольные данные величины - начальными буквами а, b, с. Ему же принадлежит нынешняя запись степени. Обозначения Декарта обладали большим преимуществом по сравнению со всеми предыдущими. Поэтому они скоро получили всеобщее признание.

Дальнейшее развитие Знаки математические было тесно связано с созданием анализа бесконечно малых, для разработки символики которого основа была уже в большой мере подготовлена в алгебре.

Даты возникновения некоторых математических знаков


знак

значение

Кто ввёл

Когда введён
Знаки индивидуальных объектов

¥

бесконечность

Дж. Валлис

1655

e

основание натуральных логарифмов

Л. Эйлер

1736

p

отношение длины окружности к диаметру

У. Джонс

Л. Эйлер


1706

i

корень квадратный из -1

Л. Эйлер

1777 (в печати 1794)

i j k

единичные векторы, орты

У. Гамильтон

1853

П (а)

угол параллельности

Н.И. Лобачевский

1835
Знаки переменных объектов

x,y, z

неизвестные или переменные величины

Р. Декарт

1637

r

вектор

О. Коши

1853
Знаки индивидуальных операций

+

сложение

немецкие математики

Конец 15 в.



вычитание

´

умножение

У. Оутред

1631

×

умножение

Г. Лейбниц

1698

:

деление

Г. Лейбниц

1684

a 2 , a 3 ,…, a n

степени

Р. Декарт

1637

И. Ньютон

1676



корни

К. Рудольф

1525

А. Жирар

1629

Log

логарифм

И. Кеплер

1624

log

Б. Кавальери

1632

sin

синус

Л. Эйлер

1748

cos

косинус

tg

тангенс

Л. Эйлер

1753

arc.sin

арксинус

Ж. Лагранж

1772

Sh


гиперболический синус
В. Риккати
1757

Ch


гиперболический косинус

dx, ddx, …

дифференциал

Г. Лейбниц

1675 (в печати 1684)

d 2 x, d 3 x,…




интеграл

Г. Лейбниц

1675 (в печати 1686)



производная

Г. Лейбниц

1675

¦¢x

производная

Ж. Лагранж

1770, 1779

y’

¦¢(x)

Dx

разность

Л. Эйлер

1755



частная производная

А. Лежандр

1786



определённый интеграл

Ж. Фурье

1819-22



сумма

Л. Эйлер

1755

П

произведение

К. Гаусс

1812

!

факториал

К. Крамп

1808

|x|

модуль

К. Вейерштрасс

1841

lim

предел


У. Гамильтон,

многие математики


1853,

начало 20 в.


lim

n = ¥

lim

n ® ¥

x

дзета-функция

Б. Риман

1857

Г

гамма-функция

А. Лежандр

1808

В

бета-функция

Ж. Бине

1839

D

дельта (оператор Лапласа)

Р. Мёрфи

1833

Ñ

набла (оператор Гамильтона)

У. Гамильтон

1853
Знаки переменных операций

jx

функция

И. Бернули

1718

f (x)

Л. Эйлер

1734
Знаки индивидуальных отношений

=

равенство

Р. Рекорд

1557

>

больше

Т. Гарриот

1631

<

меньше

º

сравнимость

К. Гаусс

1801


параллельность

У. Оутред

1677

^

перпендикулярность

П. Эригон

1634

И. Ньютон в своём методе флюксий и флюент (1666 и следующие гг.) ввёл знаки для последовательных флюксий (производных) величины (в виде

и для бесконечно малого приращения o . Несколько ранее Дж. Валлис (1655) предложил знак бесконечности ¥.

Создателем современной символики дифференциального и интегрального исчислений является Г. Лейбниц . Ему, в частности, принадлежат употребляемые ныне Знаки математические дифференциалов

dx, d 2 x, d 3 x

и интеграла

Огромная заслуга в создании символики современной математики принадлежат Л. Эйлеру . Он ввёл (1734) в общее употребление первый знак переменной операции, именно знак функции f (x ) (от лат. functio). После работ Эйлера знаки для многих индивидуальных функций, например тригонометрических, приобрели стандартный характер. Эйлеру же принадлежат обозначения постоянных е (основание натуральных логарифмов, 1736), p [вероятно, от греческого perijereia (periphereia) - окружность, периферия, 1736], мнимой единицы

(от французского imaginaire - мнимый, 1777, опубликовано в 1794).

В 19 в. роль символики возрастает. В это время появляются знаки абсолютной величины |x| (К. Вейерштрасс , 1841), вектора (О. Коши , 1853), определителя

(А. Кэли , 1841) и др. Многие теории, возникшие в 19 в., например Тензорное исчисление, не могли быть развиты без подходящей символики.

Наряду с указанным процессом стандартизации Знаки математические в современной литературе весьма часто можно встретить Знаки математические , используемые отдельными авторами только в пределах данного исследования.

С точки зрения математической логики, среди Знаки математические можно наметить следующие основные группы: А) знаки объектов, Б) знаки операций, В) знаки отношений. Например, знаки 1, 2, 3, 4 изображают числа, т. е. объекты, изучаемые арифметикой. Знак операции сложения + сам по себе не изображает никакого объекта; он получает предметное содержание, когда указано, какие числа складываются: запись 1 + 3 изображает число 4. Знак > (больше) есть знак отношения между числами. Знак отношения получает вполне определённое содержание, когда указано, между какими объектами отношение рассматривается. К перечисленным трём основным группам Знаки математические примыкает четвёртая: Г) вспомогательные знаки, устанавливающие порядок сочетания основных знаков. Достаточное представление о таких знаках дают скобки, указывающие порядок производства действий.

Знаки каждой из трёх групп А), Б) и В) бывают двух родов: 1) индивидуальные знаки вполне определённых объектов, операций и отношений, 2) общие знаки «неременных», или «неизвестных», объектов, операций и отношений.

Примеры знаков первого рода могут служить (см. также таблицу):

A 1) Обозначения натуральных чисел 1, 2, 3, 4, 5, 6, 7, 8, 9; трансцендентных чисел е и p; мнимой единицы i.

Б 1) Знаки арифметических действий +, -, ·, ´,:; извлечения корня , дифференцирования

знаки суммы (объединения) È и произведения (пересечения) Ç множеств; сюда же относятся знаки индивидуальных функций sin, tg, log и т.п.

1) Знаки равенства и неравенства =, >, <, ¹, знаки параллельности || и перпендикулярности ^, знаки принадлежности Î элемента некоторому множеству и включения Ì одного множества в другое и т.п.

Знаки второго рода изображают произвольные объекты, операции и отношения определённого класса или объекты, операции и отношения, подчинённые каким-либо заранее оговорённым условиям. Например, при записи тождества (a + b )(a - b ) = a 2 - b 2 буквы а и b обозначают произвольные числа; при изучения функциональной зависимости у = х 2 буквы х и у - произвольные числа, связанные заданным отношением; при решении уравнения

х обозначает любое число, удовлетворяющее данному уравнению (в результате решения этого уравнения мы узнаём, что этому условию соответствуют лишь два возможных значения +1 и -1).

С логической точки зрения, законно такого рода общие знаки называть знаками переменных, как это принято в математической логике, не пугаясь того обстоятельства, что «область изменения» переменного может оказаться состоящей из одного единственного объекта или даже «пустой» (например, в случае уравнений, не имеющих решения). Дальнейшими примерами такого рода знаков могут служить:

A 2) Обозначения точек, прямых, плоскостей и более сложных геометрических фигур буквами в геометрии.

Б 2) Обозначения f, , j для функций и обозначения операторного исчисления, когда одной буквой L изображают, например, произвольный оператор вида:

Обозначения для «переменных отношений» менее распространены, они находят применение лишь в математической логике (см. Алгебра логики ) и в сравнительно абстрактных, по преимуществу аксиоматических, математических исследованиях.

Лит.: Cajori ., A history of mathematical notations, v. 1-2, Chi., 1928-29.

Статья про слово "Знаки математические " в Большой Советской Энциклопедии была прочитана 39764 раз

Выберите рубрику Книги Математика Физика Контроль и управления доступом Пожарная безопасность Полезное Поставщики оборудования Cредства измерений (КИП) Измерение влажности — поставщики в РФ. Измерение давления. Измерение расходов. Расходомеры. Измерение температуры Измерение уровней. Уровнемеры. Бестраншейные технологии Канализационные системы. Поставщики насосов в РФ. Ремонт насосов. Трубопроводная арматура. Затворы поворотные (дисковые затворы). Обратные клапаны. Регулирующая арматура. Фильтры сетчатые, грязевики, магнито-механические фильтры. Шаровые краны. Трубы и элементы трубопроводов. Уплотнения резьб, фланцев и т.д. Электродвигатели, электроприводы… Руководство Алфавиты, номиналы, единицы, коды… Алфавиты, в т.ч. греческий и латинский. Символы. Коды. Альфа, бета, гамма, дельта, эпсилон… Номиналы электрических сетей. Перевод единиц измерения Децибел. Сон. Фон. Единицы измерения чего? Единицы измерения давления и вакуума. Перевод единиц измерения давления и вакуума. Единицы измерения длины. Перевод единиц измерения длины (линейного размера, расстояний). Единицы измерения объема. Перевод единиц измерения объема. Единицы измерения плотности. Перевод единиц измерения плотности. Единицы измерения площади. Перевод единиц измерения площади. Единицы измерения твердости. Перевод единиц измерения твердости. Единицы измерения температуры. Перевод единиц температур в шкалах Кельвина (Kelvin) / Цельсия (Celsius) / Фаренгейта (Fahrenheit) / Ранкина (Rankine) / Делисле (Delisle) / Ньютона (Newton) / Реамюрa Единицы измерения углов ("угловых размеров"). Перевод единиц измерения угловой скорости и углового ускорения. Стандартные ошибки измерений Газы различные как рабочие среды. Азот N2 (хладагент R728) Аммиак (холодильный агент R717). Антифризы. Водород H^2 (хладагент R702) Водяной пар. Воздух (Атмосфера) Газ природный — натуральный газ. Биогаз — канализационный газ. Сжиженный газ. ШФЛУ. LNG. Пропан-бутан. Кислород O2 (хладагент R732) Масла и смазки Метан CH4 (хладагент R50) Свойства воды. Угарный газ CO. Монооксид углерода. Углекислый газ CO2. (Холодильный агент R744). Хлор Cl2 Хлороводород HCl, он же — Cоляная кислота. Холодильные агенты (хладагенты). Хладагент (холодильный агент) R11 — Фтортрихлорметан (CFCI3) Хладагент (Холодильный агент) R12 — Дифтордихлорметан (CF2CCl2) Хладагент (Холодильный агент) R125 — Пентафторэтан (CF2HCF3). Хладагент (Холодильный агент) R134а — 1,1,1,2-Тетрафторэтан (CF3CFH2). Хладагент (Холодильный агент) R22 — Дифторхлорметан (CF2ClH) Хладагент (Холодильный агент) R32 — Дифторметан (CH2F2). Хладагент (Холодильный агент) R407С — R-32 (23%)/ R-125 (25%)/ R-134a (52%)/ Проценты по массе. другие Материалы — тепловые свойства Абразивы — зернистость, мелкость, шлифовальное оборудование. Грунты, земля, песок и другие породы. Показатели разрыхления, усадки и плотности грунтов и пород. Усадка и разрыхление, нагрузки. Углы откоса, отвала. Высоты уступов, отвалов. Древесина. Пиломатериалы. Лесоматериалы. Бревна. Дрова… Керамика. Клеи и клеевые соединения Лед и снег (водяной лед) Металлы Алюминий и сплавы алюминия Медь, бронзы и латуни Бронза Латунь Медь (и классификация медных сплавов) Никель и сплавы Соответствие марок сплавов Стали и сплавы Cправочные таблицы весов металлопроката и труб. +/-5% Вес трубы. Вес металла. Механические свойства сталей. Чугун Минералы. Асбест. Продукты питания и пищевое сырье. Свойства и пр. Ссылка на другой раздел проекта. Резины, пластики, эластомеры, полимеры. Подробное описание Эластомеров PU, ТPU, X-PU, H-PU, XH-PU, S-PU, XS-PU, T-PU, G-PU (CPU), NBR, H-NBR, FPM, EPDM, MVQ, TFE/P, POM, PA-6, TPFE-1, TPFE-2, TPFE-3, TPFE-4, TPFE-5 (PTFE модифицированный), Сопротивление материалов. Сопромат. Строительные материалы. Физические, механические и теплотехнические свойства. Бетон. Бетонный раствор. Раствор. Строительная арматура. Стальная и прочая. Таблицы применимости материалов. Химическая стойкость. Температурная применимость. Коррозионная стойкость. Уплотнительные материалы — герметики соединений. PTFE (фторопласт-4) и производные материалы. Лента ФУМ. Анаэробные клеи Герметики невысыхающие (незастывающие). Герметики силиконовые (кремнийорганические). Графит, асбест, парониты и производные материалы Паронит. Терморасширенный графит (ТРГ, ТМГ), композиции. Свойства. Применение. Производство. Лен сантехнический Уплотнители резиновых эластомеров Утеплители и теплоизоляционные материалы. (ссылка на раздел проекта) Инженерные приемы и понятия Взрывозащита. Защита от воздействия окружающей среды. Коррозия. Климатические исполнения (Таблицы совместимости материалов) Классы давления, температуры, герметичности Падение (потеря) давления. — Инженерное понятие. Противопожарная защита. Пожары. Теория автоматического управления (регулирования). ТАУ Математический справочник Арифметическая, Геометрическая прогрессии и суммы некоторых числовых рядов. Геометрические фигуры. Свойства, формулы: периметры, площади, объемы, длины. Треугольники, Прямоугольники и т.д. Градусы в радианы. Плоские фигуры. Свойства, стороны, углы, признаки, периметры, равенства, подобия, хорды, секторы, площади и т.д. Площади неправильных фигур, объемы неправильных тел. Средняя величина сигнала. Формулы и способы расчета площади. Графики. Построение графиков. Чтение графиков. Интегральное и дифференциальное исчисление. Табличные производные и интегралы. Таблица производных. Таблица интегралов. Таблица первообразных. Найти производную. Найти интеграл. Диффуры. Комплексные числа. Мнимая единица. Линейная алгебра. (Вектора, матрицы) Математика для самых маленьких. Детский сад — 7 класс. Математическая логика. Решение уравнений. Квадратные и биквадратные уравнения. Формулы. Методы. Решение дифференциальных уравнений Примеры решений обыкновенных дифференциальных уравнений порядка выше первого. Примеры решений простейших = решаемых аналитически обыкновенных дифференциальных уравнений первого порядка. Системы координат. Прямоугольная декартова, полярная, цилиндрическая и сферическая. Двухмерные и трехмерные. Системы счисления. Числа и цифры (действительные, комплексные, ….). Таблицы систем счисления. Степенные ряды Тейлора, Маклорена (=Макларена) и периодический ряд Фурье. Разложение функций в ряды. Таблицы логарифмов и основные формулы Таблицы численных значений Таблицы Брадиса. Теория вероятностей и статистика Тригонометрические функции, формулы и графики. sin, cos, tg, ctg….Значения тригонометрических функций. Формулы приведения тригонометрических функций. Тригонометрические тождества. Численные методы Оборудование — стандарты, размеры Бытовая техника, домашнее оборудование. Водосточные и водосливные системы. Емкости, баки, резервуары, танки. КИПиА Контрольно-измерительные приборы и автоматика. Измерение температуры. Конвейеры, ленточные транспортеры. Контейнеры (ссылка) Крепеж. Лабораторное оборудование. Насосы и насосные станции Насосы для жидкостей и пульп. Инженерный жаргон. Словарик. Просеивание. Фильтрация. Сепарация частиц через сетки и сита. Прочность примерная веревок, тросов, шнуров, канатов из различных пластиков. Резинотехнические изделия. Сочленения и присоединения. Диаметры условные, номинальные, Ду, DN, NPS и NB. Метрические и дюймовые диаметры. SDR. Шпонки и шпоночные пазы. Стандарты коммуникации. Сигналы в системах автоматизации (КИПиА) Аналоговые входные и выходные сигналы приборов, датчиков, расходомеров и устройств автоматизации. Интерфейсы подключения. Протоколы связи (коммуникации) Телефонная связь. Трубопроводная арматура. Краны, клапаны, задвижки…. Строительные длины. Фланцы и резьбы. Стандарты. Присоединительные размеры. Резьбы. Обозначения, размеры, использование, типы… (справочная ссылка) Соединения ("гигиенические", "асептические") трубопроводов в пищевой, молочной и фармацевтической промышленности. Трубы, трубопроводы. Диаметры труб и другие характеристики. Выбор диаметра трубопровода. Скорости потока. Расходы. Прочность. Таблицы выбора, Падение давления. Трубы медные. Диаметры труб и другие характеристики. Трубы поливинилхлоридные (ПВХ). Диаметры труб и другие характеристики. Трубы полиэтиленовые. Диаметры труб и другие характеристики. Трубы полиэтиленовые ПНД. Диаметры труб и другие характеристики. Трубы стальные (в т.ч. нержавеющие). Диаметры труб и другие характеристики. Труба стальная. Труба нержавеющая. Трубы из нержавеющей стали. Диаметры труб и другие характеристики. Труба нержавеющая. Трубы из углеродистой стали. Диаметры труб и другие характеристики. Труба стальная. Фитинги. Фланцы по ГОСТ, DIN (EN 1092-1) и ANSI (ASME). Соединение фланцев. Фланцевые соединения. Фланцевое соединение. Элементы трубопроводов. Электрические лампы Электрические разъемы и провода (кабели) Электродвигатели. Электромоторы. Электрокоммутационные устройства. (Ссылка на раздел) Стандарты личной жизни инженеров География для инженеров. Расстояния, маршруты, карты….. Инженеры в быту. Семья, дети, отдых, одежда и жилье. Детям инженеров. Инженеры в офисах. Инженеры и другие люди. Социализация инженеров. Курьезы. Отдыхающие инженеры. Это нас потрясло. Инженеры и еда. Рецепты, полезности. Трюки для ресторанов. Международная торговля для инженеров. Учимся думать барыжным образом. Транспорт и путешествия. Личные автомобили, велосипеды…. Физика и химия человека. Экономика для инженеров. Бормотология финансистов — человеческим языком. Технологические понятия и чертежи Бумага писчая, чертежная, офисная и конверты. Стандартные размеры фотографий. Вентиляция и кондиционирование. Водоснабжение и канализация Горячее водоснабжение (ГВС). Питьевое водоснабжение Сточная вода. Холодное водоснабжение Гальваническая промышленность Охлаждение Паровые линии / системы. Конденсатные линии / системы. Паропроводы. Конденсатопроводы. Пищевая промышленность Поставка природного газа Сварочные металлы Символы и обозначения оборудования на чертежах и схемах. Условные графические изображения в проектах отопления, вентиляции, кондиционирования воздуха и теплохолодоснабжения, согласно ANSI/ASHRAE Standard 134-2005. Стерилизация оборудования и материалов Теплоснабжение Электронная промышленность Электроснабжение Физический справочник Алфавиты. Принятые обозначения. Основные физические константы. Влажность абсолютная, относительная и удельная. Влажность воздуха. Психрометрические таблицы. Диаграммы Рамзина. Время Вязкость, Число Рейнольдса (Re). Единицы измерения вязкости. Газы. Свойства газов. Индивидуальные газовые постоянные. Давление и Вакуум Вакуум Длина, расстояние, линейный размер Звук. Ультразвук. Коэффициенты звукопоглощения (ссылка на другой раздел) Климат. Климатические данные. Природные данные. СНиП 23-01-99. Строительная климатология. (Статистика климатических данных) СНИП 23-01-99 .Таблица 3 — Средняя месячная и годовая температура воздуха, °С. Бывший СССР. СНИП 23-01-99 Таблица 1. Климатические параметры холодного периода года. РФ. СНИП 23-01-99 Таблица 2. Климатические параметры теплого периода года. Бывший СССР. СНИП 23-01-99 Таблица 2. Климатические параметры теплого периода года. РФ. СНИП 23-01-99 Таблица 3. Средняя месячная и годовая температура воздуха, °С. РФ. СНиП 23-01-99. Таблица 5а* — Среднее месячное и годовое парциальное давление водяного пара, гПа = 10^2 Па. РФ. СНиП 23-01-99. Таблица 1. Климатические параметры холодного времени года. Бывший СССР. Плотности. Веса. Удельный вес. Насыпная плотность. Поверхностное натяжение. Растворимость. Растворимость газов и твердых веществ. Свет и цвет. Коэффициенты отражения, поглощения и преломления Цветовой алфавит:) — Обозначения (кодировки) цвета (цветов). Свойства криогенных материалов и сред. Таблицы. Коэффициенты трения для различных материалов. Тепловые величины, включая температуры кипения, плавления, пламени и т.д …… дополнительная информация см.: Коэффициенты (показатели) адиабаты. Конвекционный и полный теплообмен. Коэффициенты теплового линейного расширения, теплового объемного расширения. Температуры, кипения, плавления, прочие… Перевод единиц измерения температуры. Воспламеняемость. Температура размягчения. Температуры кипения Температуры плавления Теплопроводность. Коэффициенты теплопроводности. Термодинамика. Удельная теплота парообразования (конденсации). Энтальпия парообразования. Удельная теплота сгорания (теплотворная способность). Потребность в кислороде. Электрические и магнитные величины Дипольные моменты электрические. Диэлектрическая проницаемость. Электрическая постоянная. Длины электромагнитных волн (справочник другого раздела) Напряженности магнитного поля Понятия и формулы для электричества и магнетизма. Электростатика. Пьезоэлектрические модули. Электрическая прочность материалов Электрический ток Электрическое сопротивление и проводимость. Электронные потенциалы Химический справочник "Химический алфавит (словарь)" — названия, сокращения, приставки, обозначения веществ и соединений. Водные растворы и смеси для обработки металлов. Водные растворы для нанесения и удаления металлических покрытий Водные растворы для очистки от нагара (асфальтосмолистого нагара, нагара двигателей внутреннего сгорания…) Водные растворы для пассивирования. Водные растворы для травления — удаления окислов с поверхности Водные растворы для фосфатирования Водные растворы и смеси для химического оксидирования и окрашивания металлов. Водные растворы и смеси для химического полирования Обезжиривающие водные растворы и органические растворители Водородный показатель pH. Таблицы показателей pH. Горение и взрывы. Окисление и восстановление. Классы, категории, обозначения опасности (токсичности) химических веществ Периодическая система химических элементов Д.И.Менделеева. Таблица Менделеева. Плотность органических растворителей (г/см3)в зависимости от температуры. 0-100 °С. Свойства растворов. Константы диссоциации, кислотности, основности. Растворимость. Смеси. Термические константы веществ. Энтальпии. Энтропии. Энергии Гиббса… (ссылка на химический справочник проекта) Электротехника Регуляторы Системы гарантированного и бесперебойного электроснабжения. Системы диспетчеризации и управления Структурированные кабельные системы Центры обработки данных

Каждому из нас ещё со школьной скамьи (а точнее с 1-го класса начальной школы) должны быть знакомы такие простые математические символы, как знак больше и знак меньше , а также знак равно.

Однако, если с последним что-то напутать достаточно сложно, то о том, как и в какую сторону пишутся знаки больше и меньше (знак менее и знак более , как ещё их иногда называют) многие сразу после этой же школьной скамьи и забывают, т.к. они довольно редко используются нами в повседневной жизни.

Но практически каждому рано или поздно всё равно приходится столкнуться с ними, и "вспомнить" в какую сторону пишется нужный им символ получается лишь обратившись за помощью к любимой поисковой системе. Так почему бы не ответить развернуто на этот вопрос, заодно подсказав посетителям нашего сайта как запомнить правильное написание этих знаков на будущее?

Именно о том, как правильно пишется знак больше и знак меньше мы и хотим напомнить вам в этой небольшой заметке. Также будет не лишним рассказать и том, как набрать на клавиатуре знаки больше или равно и меньше или равно , т.к. этот вопрос тоже довольно часто вызывает затруднения у пользователей, сталкивающихся с такой задачей очень редко.

Перейдем сразу к делу. Если вам не очень интересно запоминать всё это на будущее и проще в следующий раз снова "погуглить", а сейчас просто нужен ответ на вопрос "в какую сторону писать знак", тогда для вас мы приготовили краткий ответ - знаки больше и меньше пишутся так, как показано на изображении ниже.

А теперь расскажем немного подробнее о том, как это понять и запомнить на будущее.

В общем и целом логика понимания очень проста - какой стороной (большей или меньшей) знак по направлению письма смотрит в левую сторону - такой и знак. Соответственно, знак больше влево смотрит широкой стороной - большей.

Пример использования знака больше:

  • 50>10 - число 50 больше числа 10;
  • посещаемость студента в этом семестре составила >90% занятий.

Как писать знак меньше, пожалуй, повторно объяснять уже не стоит. Совершенно аналогично знаку больше. Если знак смотрит влево узкой стороной - меньшей, то перед вами знак меньше.
Пример использования знака меньше:

  • 100<500 - число 100 меньше числа пятьсот;
  • на заседание явилось <50% депутатов.

Как видите, все довольно логично и просто, так что теперь вопросов о том, в какую сторону писать знак больше и знак меньше в будущем у вас возникать не должно.

Знак больше или равно/меньше или равно

Если вы уже вспомнили, как пишется необходимый вам знак, то дописать к нему одну черточку снизу вам не составит труда, таким образом вы получите знак "меньше или равно" или знак "больше или равно" .

Однако относительно этих знаков у некоторых возникает другой вопрос - как набрать такой значок на клавиатуре компьютера? В результате большинство просто ставят два знака подряд, к примеру, "больше или равно" обозначая как ">=" , что, в принципе, часто вполне допустимо, но можно сделать красивее и правильнее.

На самом деле для того, чтобы напечатать эти знаки, существуют специальные символы, которые можно ввести на любой клавиатуре. Согласитесь, знаки "≤" и "≥" выглядят значительно лучше.

Знак больше или равно на клавиатуре

Для того, чтобы написать "больше или равно" на клавиатуре одним знаком даже не нужно лезть в таблицу специальных символов - просто поставьте знак больше с зажатой клавишей "alt" . Таким образом сочетание клавиш (вводится в английской раскладке) будет следующим.

Или же вы можете просто скопировать значок из этой статьи, если вам нужно воспользоваться им один раз. Вот он, пожалуйста.

Знак меньше или равно на клавиатуре

Как вы наверное уже смогли догадаться сами, написать "меньше или равно" на клавиатуре вы можете по аналогии со знаком больше - просто поставьте знак меньше с зажатой клавишей "alt" . Сочетание клавиш, которое нужно вводить в английской раскладке, будет следующим.

Или просто скопируйте его с этой страницы, если вам так будет проще, вот он.

Как видите, правило написания знаков больше и меньше довольно просто запомнить, а для того чтобы набрать значки больше или равно и меньше или равно на клавиатуре достаточно просто нажать дополнительную клавишу - всё просто.

    В абстрактной алгебре повсеместно используются символы для упрощения и сокращения текста, а также стандартные обозначения для некоторых групп. Ниже приведён список наиболее часто встречающихся алгебраических обозначений, соответствующие команды в … Википедия

    Математические обозначения это символы, используемые для компактной записи математических уравнений и формул. Помимо цифр и букв различных алфавитов (латинского, в том числе в готическом начертании, греческого и еврейского),… … Википедия

    Статья содержит список общеупотребительных аббревиатур математических функций, операторов и др. математических терминов. Содержание 1 Аббревиатуры 1.1 Латиница 1.2 Греческий алфавит … Википедия

    Юникод, или Уникод (англ. Unicode) стандарт кодирования символов, позволяющий представить знаки практически всех письменных языков. Стандарт предложен в 1991 году некоммерческой организацией «Консорциум Юникода» (англ. Unicode Consortium,… … Википедия

    Список используемых в математике специфических символов можно увидеть в статье Таблица математических символов Математические обозначения («язык математики») сложная графическая система обозначений, служащая для изложения абстрактных… … Википедия

    У этого термина существуют и другие значения, см. Плюс минус (значения). ± ∓ Знак плюс минус (±) математический символ, который ставится перед некоторым выражением и означает, что значение этого выражения может быть как положительным, так и … Википедия

    Необходимо проверить качество перевода и привести статью в соответствие со стилистическими правилами Википедии. Вы можете помочь … Википедия

    Или математические символы знаки, которые символизируют определённые математические действия со своими аргументами. К самым распространённым относятся: Плюс: + Минус: , − Знак умножения: ×, ∙ Знак деления: :, ∕, ÷ Знак возведения в… … Википедия

    Знаки операций или математические символы знаки, которые символизируют определённые математические действия со своими аргументами. К самым распространённым относятся: Плюс: + Минус: , − Знак умножения: ×, ∙ Знак деления: :, ∕, ÷ Знак возведения… … Википедия