Источники парниковых газов. Понятие и виды парниковых газов

Парниковые газы

Парниковые газы - газы с высокой прозрачностью в видимом диапазоне и с высоким поглощением в дальнем инфракрасном диапазоне. Присутствие таких газов в атмосферах планет приводит к появлению парникового эффекта .

Основным парниковым газом в атмосферах Венеры и Марса является диоксид углерода, в атмосфере Земли - водяной пар.

Основными парниковыми газами, в порядке их оцениваемого воздействия на тепловой баланс Земли , являются водяной пар , углекислый газ , метан и озон

Потенциально в парниковый эффект могут вносить вклад и антропогенные галогенированные углеводороды и оксиды азота , однако ввиду низких концентраций в атмосфере оценка их вклада проблематична.

Водяной пар

Анализ пузырьков воздуха во льдах свидетельствует о том, что сейчас в атмосфере Земли больше метана, чем в любое время за последние 400000 лет. С 1750 года средняя глобальная атмосферная концентрация метана возросла на 150 процентов от приблизительно 700 до 1745 частей на миллиард по объему (ppbv) в 1998 году. За последнее десятилетие, хотя концентрация метана продолжала расти, скорость роста замедлилась. В конце 1970-х годов темпы роста составили около 20 ppbv в год. В 1980-х годов рост замедлился до 9-13 ppbv в год. В период с 1990 по 1998 наблюдался рост между 0 и 13 ppbv в год. Недавние исследования (Dlugokencky и др.) показывают устойчивую концентрацию 1751 ppbv между 1999 и 2002 гг.

Метан удаляется из атмосферы посредством нескольких процессов. Баланс между выбросами метана и процессами его удаления в конечном итоге определяет атмосферные концентрации и время пребывания метана в атмосфере. Доминирующим является окисление с помощью химической реакции с гидроксильными радикалами (ОН). Метан реагирует с ОН в тропосфере, производя СН 3 и воду. Стратосферное окисление также играет некоторую (незначительную) роль в устранении метана из атмосферы. На эти две реакции с ОН приходится около 90% удаления метана из атмосферы. Кроме реакции с ОН известно еще два процесса: микробиологическое поглощение метана в почвах и реакция метана с атомами хлора (Cl) на поверхности моря. Вклад этих процессов 7% и менее 2% соответственно.

Озон

Озон является парниковым газом. В то же время озон необходим для жизни, поскольку защищает Землю от жёсткого ультрафиолетового излучения Солнца.

Однако ученые различают стратосферный и тропосферный озон. Первый (так называемый озоновый слой) является постоянной и основной защитой от вредного излучения. Второй же считается вредным, так как может переноситься к поверхности Земли, где вредит живым существам, и к тому же неустойчив и не может быть надежной защитой. Кроме того, повышение содержания именно тропосферного озона внесло вклад в рост парникового эффекта атмосферы, который (по наиболее широко распространенным научным оценкам) составляет около 25% от вклада СО 2

Большая часть тропосферного озона образуется, когда оксиды азота (NO x), окись углерода (СО) и летучие органические соединения вступают в химические реакции в присутствии солнечного света. Транспорт, промышленные выбросы, а также некоторые химические растворители являются основными источниками этих веществ в атмосфере. Метан, атмосферная концентрация которого значительно возросла в течение последнего столетия, также способствует образованию озона. Время жизни тропосферного озона составляет примерно 22 дня, основными механизмами его удаления являются связывание в почве, разложение под действием ультрафиолетовых лучей и реакции с радикалами OH и HO 2 .

Концентрации тропосферного озона отличаются высоким уровнем изменчивости и неравномерности в географическом распределении. Существует система мониторинга уровня тропосферного озона в США и Европе , основанная на спутниках и наземном наблюдении. Поскольку для образования озона требуется солнечный свет, высокие уровни озона наблюдаются обычно в периоды жаркой и солнечной погоды. Нынешняя средняя концентрация тропосферного озона в Европе в три раза выше, чем в доиндустриальную эпоху.

Увеличение концентрации озона вблизи поверхности имеет сильное негативное воздействие на растительность, повреждая листья и угнетая их фотосинтетический потенциал. В результате исторического процесса увеличения концентрации приземного озона, вероятно, была подавлена способность поверхности суши поглощать СО 2 и поэтому увеличились темпы роста СО 2 в XX веке. Ученые (Sitch и др. 2007) полагают, что это косвенное воздействие на климат увеличило почти вдвое тот вклад, который концентрация приземного озона внесла в изменения климата. Снижение загрязнения нижней тропосферы озоном может компенсировать 1-2 десятилетия эмиссии СО 2 , при этом экономические издержки будут относительно невелики (Wallack и Ramanathan, 2009).

Оксид азота

Парниковая активность закиси азота в 298 раз выше, чем у углекислого газа.

Фреоны

Парниковая активность фреонов в 1300-8500 раз выше чем у углекислого газа. Основным источником фреона являются холодильные установки и аэрозоли.

См. также

  • Киотский протокол (CO 2 , CH 4 , HFCs, PFCs, N 2 O, SF 6)

Примечания

Ссылки

  • Point Carbon – аналитическая компания, специализирующаяся на предоставлении независимой оценки, прогнозов, и информации о торговле выбросами парниковых газов.
  • “Г И С – атмосфера” автоматическая система мониторинга качества атмосферного воздуха
  • Полезные материалы и статьи монтажнику кондиционеров и систем вентиляции →
  • Влияние хладагентов на истощение озонового слоя и глобальное потепление →
  • Парниковые газы

    

    Главным парниковым газом является водяной пар (H 2 O), который ответственен примерно за две трети природного парникового эффекта. Другие основные парниковые газы – это углекислый газ (СО 2), метан (СН 4), азотистый оксид (N 2 O) и фторированные парниковые газы. Эти газы регулируются Киотским Протоколом.

    ХФУ и ГХФУ – это также парниковые газы, но регулируемые скорее Монреальским, чем Киотским Протоколом.

    Стратосферный озон сам является парниковым газом. Таким образом, истощение озона послужило смягчению некоторых аспектов по изменению климата, в то время как восстановление озонового слоя добавит климатических изменений.

    Углекислый газ

    Основной участник усиления (искусственного) парникового эффекта это диоксид углерода (СО 2). В промышленных странах СО 2 представляет более, чем 80% выбросов парниковых газов.

    В настоящее время, в мире выделяется более 25 млрд. тонн углекислого газа каждый год. СО 2/sub> может оставаться в атмосфере от 50 до 200 лет, в зависимости от того, как он возвращается в оборот земли и океанов.

    Метан

    Второй наиболее важный парниковый газ для усиления парникового эффекта – это метан СН 4 . С начала промышленной революции концентрации атмосферного метана удвоились и вносят 20% вложений в усиление эффекта парниковых газов. В промышленных странах метан типично составляет 15% выбросов парниковых газов.

    Антропогенные выбросы метана связаны с горной промышленностью, сжиганием органического топлива, скотоводства, выращивание риса и мусорные свалки.
    ПГП метана в 23 раза больше, чем у СО 2 .

    Закись азота

    Закись азота (N 2 O) естественно высвобождается из океанов и тропических лесов и бактериями в почвах. Источники влияния человека включают азотистые удобрения, сжигание органических топлив и промышленное производство химикатов, использующих азот, например, обработка сточных вод.

    В индустриальных странах N 2 O несет ответственность примерно за 6% выбросов парниковых газов. Как СО 2 и метан, закись азота – это парниковый газ, чьи молекулы поглощают тепло, которое пытается испариться в космос. N 2 O имеет в 310 раз больший потенциал, чем СО 2 .

    С начала индустриальной революции, концентрации закиси азота в атмосфере увеличились на 16% и вносят вклад от 4 до 6 % в усиление парникового эффекта.

    Фторированные парниковые газы

    Финальная группа парниковых газов включает в себя фторированные составляющие, такие, как гидрофторуглероды (ГФУ), которые используются, как хладагенты и пенообразующие агенты, перфторированные углероды (ПФУ), которые выделяются во время производства алюминия; и серные гексафлориды (СГФ-SF 6), которые используются в электронной промышленности.

    Это единственные парниковые газы, которые не производятся в природе.

    Атмосферные концентрации малы, они составляют около 1,5% в целом от выбросов парникового газа индустриальных стран. Однако, они чрезвычайно мощные; они имеют в 1000-4000 раз больший потенциал, чем СО 2 , а некоторые – более чем в 22000 раз.

    ГФУ – одна из альтернатив ГХФУ в охлаждении, воздушном кондиционировании и пенообразовании. Последствия этих мощных парниковых способностей являются, таким образом, одним фактором, который должен быть учтен при выборе альтернатив и развитии стратегий ликвидации.

    Одним из основных парниковых газов считают диоксид углерода - углекислый газ (С02). Его роль до недавнего времени слишком подчеркивалась, на его долю относили до половины общего вклада в парниковый эффект. Однако сейчас пришли к мнению, что эта оценка была завышенной.

    Инструментально доказано, что в последние десятилетия ежегодное накопление С0 2 в атмосфере составляет 0,4%. С начала XX в. уровень С0 2 в атмосфере увеличился на 31%. Эта величина существенна, чтобы повысить температуру. По самому оптимистичному сценарию, температура повысится в ближайшее столетие на 1,5-2°С, а но самому пессимистичному - почти на 6°С.

    Каждый год в атмосферу из антропогенных источников поступает 6 млрд т диоксида углерода, из них 3 млрд т поглощаются растительностью в процессах фотосинтеза, оставшиеся 3 млрд т накапливаются. Общая сумма накоплений по вине человека за прошедшие 100 лет составила около 170 млрд т. Приведенные данные следует рассматривать в сопоставлении со 190 млрд т углекислого газа, которые ежегодно поступают в атмосферу вследствие естественных процессов. По оценкам ряда российских ученых, вклад антропогенной деятельности в глобальное потепление составляет лишь 10-15%, а остальное приходится на долю глобальных природных циклов. Поэтому усилия человечества на пути снижения выброса парниковых газов едва ли смогут заметно замедлить грядущее потепление.

    Рост концентрации С0 2 не означает гибель для биосферы. Миллионы лет назад, в каменноугольный период, концентрация С0 2 была в 10 раз выше, чем сейчас. В тот период растительность буйно развивалась, деревья достигали больших размеров. Но для человеческой популяции условия были неблагоприятными. Предельный верхний уровень содержания С0 2 в атмосфере для человека не установлен.

    Существуют разные гипотезы о причинах накопления С0 2 в атмосфере. Согласно первой, наиболее распространенной точке зрения углекислый газ накапливается в атмосфере как продукт сжигания органического топлива. Вторая гипотеза основной причиной роста содержания С0 2 считает нарушение функций микробных сообществ в почвах Сибири и части Северной Америки. Независимо от выбора гипотезы накопление диоксида углерода происходит во все увеличивающихся масштабах.

    Большое воздействие на климат оказывают такие парниковые газы, как метан, оксиды азота и водяной пар.

    До последнего времени недооценивалась роль метана (СН 4). Он активно участвует в парниковом эффекте. Кроме того, поднимаясь на высоту 15-20 км, метан под действием солнечных лучей разлагается на водород и углерод, который, соединяясь с кислородом, образует диоксид углерода. Это еще больше усиливает парниковый эффект.

    В природе СН 4 образуется в болотах при гниении органики, его еще называют болотным газом. Метан также возникает в обширных мангровых зарослях в тропических областях. Рост концентрации СН 4 происходит в мире за счет разрушения биоты. Кроме того, он поступает в атмосферу из тектонических разломов на суше и на дне океана.

    Антропогенные выбросы метана связаны с разведкой и добычей полезных ископаемых, со сгоранием минерального топлива в тепловых электростанциях и органического топлива в двигателях внутреннего сгорания транспортных средств, его выделением на животноводческих фермах. Использование азотных удобрений, выращивание риса, свалки бытовых отходов, утечки и неполное сгорание природного газа также ведут к росту выбросов метана и оксидов азота, которые являются мощными парниковыми газами. Содержание СН 4 в атмосфере, по инструментальным данным, возрастает на 1% в год. За прошедшие 100 лет рост составил 145%.

    Оксиды азота накапливаются в атмосфере за год в пределах 0,2%, а общее накопление за период интенсивного промышленного развития составило около 15%. Увеличение содержания оксидов азота обусловливается сельскохозяйственной деятельностью и массовым уничтожением лесов.

    Быстрое потепление климата на Земле приводит к ускорению кругооборота воды в природе, усилению испарения с водных поверхностей, что способствует накоплению водяного пара в атмосфере и активизации действия парникового эффекта. По мнению некоторых ученых, около 60% парникового эффекта вызывают пары воды. Чем больше их в тропосфере, тем сильнее парниковый эффект, а их концентрация в свою очередь зависит от приземных температур и площади водной поверхности.

    Парниковые газы поглощают отраженную энергию Солнца, делая атмосферу Земли более теплой. Большая часть солнечной энергии достигает поверхности планеты, а часть отражается обратно в космос. Некоторые газы, присутствующие в атмосфере, поглощают отраженную энергию и перенаправляют ее обратно на Землю в виде тепла. Газы, ответственные за это, называются парниковыми газами, поскольку они играют ту же роль, что и прозрачный пластик или стекло, покрывающие теплицу.

    Парниковые газы и деятельность человека

    Некоторые парниковые газы выделяются естественным путем в результате , вулканической активности и биологических процессов. Однако, начиная с возникновения промышленной революции на рубеже XIX века, люди выпускали в атмосферу все большее количество парниковых газов. Это увеличение ускорилось с развитием нефтехимической промышленности.

    Парниковый эффект

    Тепло, отраженное от парниковых газов, производит измеримое потепление поверхности Земли и океанов. Это оказывает широкомасштабное воздействие на лед, океаны, и .

    Основные парниковые газы Земли:

    Водяной пар

    Водяной пар является наиболее сильным и важным из парниковых газов Земли. Количество водяного пара в не может быть непосредственно изменено деятельностью человека - оно определяется температурой воздуха. Чем теплее, тем выше скорость испарения воды с поверхности. В результате, увеличенное испарение приводит к большей концентрации водяного пара в нижней атмосфере, способной поглощать инфракрасное излучение и отражать его вниз.

    Углекислый газ (CO2)

    Углекислый газ является самым важным парниковым газом. Он высвобождается в атмосферу в результате сжигания ископаемого топлива, извержения вулканов, разложения органических веществ и передвижения транспортных средств. Процесс производства цемента приводит к выбросу большого количества углекислого газа. Вспашка земли также вызывает высвобождение большого количества углекислого газа, обычно хранящегося в почве.

    Растительная жизнь, которая поглощает СО2 в , является важным естественным хранилищем углекислого газа. также может поглощать растворенный в воде CO2.

    Метан

    Метан (CH4) - второй наиболее важный парниковый газ после двуокиси углерода. Он более сильный, чем CO2, но присутствует в атмосфере в гораздо меньших концентрациях. CH4 может находится в атмосфере в течение более короткого времени, по сравнению с CO2 (время пребывания CH4 составляет примерно 10 лет, по сравнению с сотнями лет для CO2). Природные источники метана включают в себя: водно-болотные угодья; горение биомассы; процессы жизнедеятельности крупного рогатого скота; выращивание риса; добыча, сжигание и переработка нефти или природного газа и др. Основным природным поглотителем метана является сама атмосфера; другим - почва, где метан окисляется бактериями.

    Как и в случае с СО2, деятельность человечества увеличивает концентрацию СН4 быстрее, чем метан поглощается естественным образом.

    Тропосферный озон

    Следующим наиболее значительным парниковым газом является тропосферный озон (O3). Он образуется в результате загрязнения воздуха и его следует отличать от естественного стратосферного О3, который защищает нас от многих разрушительных солнечных лучей. В нижних частях атмосферы озон возникает при разрушении других химических веществ (например, оксидов азота). Этот озон считается парниковым газом, но он недолговечен и хотя способен в значительной степени способствовать потеплению, его последствия обычно локальные, а не глобальные.

    Второстепенные парниковые газы

    Второстепенными парниковыми газами выступают оксиды азота и фреоны. Они являются потенциально опасными для . Однако в связи с тем, что их концентрации не такие значительные как вышеупомянутых газов, оценка их влияния на климат полностью не изучена.

    Оксиды азота

    Оксиды азота находятся в атмосфере благодаря естественным биологическим реакциям в почве и воде. Тем не менее большое количество выделяемого оксида азота вносит значительный вклад в глобальное потепление. Основным источником является производство и использование синтетических удобрений в сельскохозяйственной деятельности. Моторные автомобили выделяют оксиды азота при работе на ископаемых видах топлива, таких как бензин или дизельное топливо.

    Фреоны

    Фреоны представляют собой группу углеводородов с различными видами использования и характеристиками. Хлорфторуглероды широко используются в качестве хладагентов (в кондиционерах и холодильниках), вспенивателей, растворителей и др. Их производство уже запрещено в большинстве стран, но они по-прежнему присутствуют в атмосфере и наносят ущерб озоновому слою. Гидрофторуглероды служат альтернативой более вредным озоноразрушающим веществам, и вносят гораздо меньший вклад в глобальное изменение климата на планете.

    Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .