Как ученые из NASA собираются превысить скорость света в космосе. Что мешает людям летать в космосе со скоростью света

Со школьной скамьи нас учили - превысить скорость света невозможно, и поэтому перемещение человека в космическом пространстве является большой неразрешимой проблемой (как долететь до ближайшей солнечной системы, если свет сможет преодолеть это расстояние только за несколько тысяч лет?). Возможно, американские ученые нашли способ летать на сверхскоростях, не только не обманув, но и следуя фундаментальным законам Альберта Эйнштейна. Во всяком случае так утверждает автор проекта двигателя деформации пространства Гарольд Уайт.

Мы в редакции сочли новость совершенно фантастической, поэтому сегодня, в преддверии Дня космонавтики, публикуем репортаж Константина Какаеса для журнала Popular Science о феноменальном проекте NASA, в случае успеха которого человек сможет отправиться за пределы Солнечной системы.

В сентябре 2012 года несколько сотен ученых, инженеров и космических энтузиастов собрались вместе для второй публичной встречи группы под названием 100 Year Starship. Группой руководит бывший астронавт Май Джемисон, и основана она DARPA. Цель конференции - «сделать возможным путешествие человека за пределы Солнечной системы к другим звездам в течение ближайших ста лет». Большинство участников конференции признают, что подвижки в пилотируемом изучении космического пространства слишком незначительны. Несмотря на миллиарды долларов, затраченных в последние несколько кварталов, космические агентства могут почти столько же, сколько могли в 1960-х. Собственно, 100 Year Starship созвана, чтобы все это исправить.

Но ближе к делу. Спустя несколько дней конференции ее участники дошли до самых фантастических тем: регенерация органов, проблема организованной религии на борту корабля и так далее. Одна из наиболее любопытных презентаций на собрании 100 Year Starship называлась «Механика деформационного поля 102», и провел ее Гарольд «Сонни» Уайт из NASA. Ветеран агентства, Уайт руководит продвинутой импульсной программой в космическом центре Джонсона (JSC). Вместе с пятью коллегами он создал «Дорожную карту космических двигательных систем», которая озвучивает цели NASA в ближайших космических путешествиях. На плане перечисляются все виды двигательных проектов: от усовершенствованных химических ракет до далеко идущих разработок, вроде антиматерии или ядерных машин. Но область исследований Уайта самая футуристичная из всех: она касается двигателя деформации пространства.

так обычно изображают пузырь Алькубьерре

Согласно плану, такой двигатель обеспечит перемещения в пространстве со скоростью, превышающей скорость света. Общепризнанно, что это невозможно, поскольку является явным нарушением теории относительности Эйнштейна. Но Уайт утверждает обратное. В качестве подтверждения своих слов он апеллирует к так называемым пузырям Алькубьерре (уравнения, выходящие из теории Эйнштейна, согласно которым тело в космическом пространстве способно достигать сверхсветовых скоростей, в отличие от тела в нормальных условиях). В презентации он рассказал, как недавно сумел добиться теоретических результатов, которые напрямую ведут к созданию реального двигателя деформации пространства.

Понятно, что звучит это все совершенно фантастически: подобные разработки - это настоящая революция, которая развяжет руки всем астрофизикам мира. Вместо того, чтобы тратить 75 тысяч лет на путешествие к Альфа-Центавре, ближайшей к нашей звездной системе, астронавты на корабле с таким двигателем смогут совершить это путешествие за пару недель.


В свете закрытия программы запуска шаттлов и все возрастающей роли частных полетов к околоземной орбите NASA заявляет, что переориентируется на далекоидущие, намного более смелые планы, выходящие далеко за рамки путешествий на Луну. Достичь этих целей можно только с помощью развития новых двигательных систем - чем быстрее, тем лучше. Несколько дней спустя после конференции глава NASA Чарльз Болден, повторил слова Уайта: «Мы хотим перемещаться быстрее скорости света и без остановок на Марсе».

ОТКУДА МЫ ЗНАЕМ ПРО ЭТОТ ДВИГАТЕЛЬ

Первое популярное использование выражения «двигатель деформации пространства» датируется 1966 годом, когда Джен Родденберри выпустил «Звездный путь». Следующие 30 лет этот двигатель существовал только как часть этого фантастического сериала. Физик по имени Мигель Алькубьерре посмотрел один из эпизодов этого сериала как раз в тот момент, когда трудился над докторской в области общей теории относительности и задавался вопросом, возможно ли создание двигателя деформации пространства в реальности. В 1994 году он опубликовал документ, излагающий эту позицию.


Алькубьерре представил в космосе пузырь. В передней части пузыря время-пространство сокращается, а в задней - расширяется (как было при Большом взрыве, по мнению физиков). Деформация заставит корабль гладко скользить в космическом пространстве, как если бы он серфил на волне, несмотря на окружающий шум. В принципе деформированный пузырь может двигаться сколько угодно быстро; ограничения в скорости света, по теории Эйнштейна, распространяются только в контексте пространства-времени, но не в таких искажениях пространства-времени. Внутри пузыря, как предполагал Алькубьерре, пространство-время не изменится, а космическим путешественникам не будет нанесено никакого вреда.

Уравнения Эйнштейна в общей теории относительности сложно решить в одном направлении, выясняя, как материя искривляет пространство, но это осуществимо. Используя их, Алькубьерре определил, что распределение материи есть необходимое условие для создания деформированного пузыря. Проблема только в том, что решения приводили к неопределенной форме материи под названием отрицательная энергия.

Говоря простым языком, гравитация - это сила притяжения между двумя объектами. Каждый объект вне зависимости от его размеров оказывает некоторую силу притяжения на окружающую материю. По мнению Эйнштейна, эта сила является искривлением пространства-времени. Отрицательная энергия, однако, гравитационно отрицательна, то есть отталкивающа. Вместо того чтобы соединять время и пространство, отрицательная энергия отталкивает и разобщает их. Грубо говоря, чтобы такая модель работала, Алькубьерре необходима отрицательная энергия, чтобы расширять пространство-время позади корабля.

Несмотря на то, что никто и никогда особенно не измерял отрицательную энергию, согласно квантовой механике, она существует, а ученые научились создавать ее в лабораторных условиях. Один из способов ее воссоздания - через Казимиров эффект: две параллельно проводящие пластины, расположенные близко друг к другу, создают некоторое количество отрицательной энергии. Слабое место модели Алькубьерре в том, что для ее осуществления требуется огромное количество отрицательной энергии, на несколько порядков выше, чем, по оценкам ученых, ее можно произвести.

Уайт говорит, что он нашел, как пойти в обход этого ограничения. В компьютерном симуляторе Уайт изменил геометрию деформационного поля так, что в теории он мог бы производить деформированный пузырь, используя в миллионы раз меньше отрицательной энергии, чем требовалось по оценкам Алькубьерра, и, возможно, достаточно мало, чтобы космический корабль мог нести средства его производства. «Открытия, - говорит Уайт, - меняют метод Алькубьерре с непрактичного на вполне правдоподобный».

РЕПОРТАЖ ИЗ ЛАБОРАТОРИИ УАЙТА

Космический центр Джонсона расположился рядом с лагунами Хьюстона, откуда открывается путь к заливу Гальвестон. Центр немного напоминает пригородный кампус колледжа, только направленный на подготовку астронавтов. В день моего посещения Уайт встречает меня в здании 15, многоэтажном лабиринте коридоров, офисов и лабораторий, в которых проводятся испытания двигателя. На Уайте рубашка поло с эмблемой Eagleworks (так он называет свои эксперименты по созданию двигателя), на которой вышит орел, парящий над футуристическим космическим кораблем.


Уайт начинал свою карьеру с работы инженером - проводил исследования в составе роботической группы. Со временем он взял на себя командование всем крылом, занимающимся роботами на МКС, одновременно заканчивая писать докторскую в области физики плазмы. Только в 2009-м он сменил свои интересы на изучение движения, и эта тема захватила его настолько, что стала основной причиной, по которой он отправился работать на NASA.

«Он довольно необычный человек, - говорит его босс Джон Эпплуайт, возглавляющий отделение двигательных систем. - Он совершенно точно большой фантазер, но одновременно и талантливый инженер. Он умеет превращать свои фантазии в реальный инженерный продукт». Примерно в то же время, когда он присоединился к NASA, Уайт попросил разрешения открыть собственную лабораторию, посвященную продвинутым двигательным системам. Он сам и придумал название Eagleworks и даже попросил NASA создать логотип для его специализации. Тогда и началась эта работа.

Уайт ведет меня к своему офису, который делит с коллегой, занимающимся поисками воды на Луне, а после ведет вниз к Eagleworks. На ходу он рассказывает мне про свою просьбу открыть лабораторию и называет это «долгим трудным процессом поиска продвинутого движения, чтобы помочь человеку исследовать космос».

Уайт демонстрирует мне объект и показывает его центральную функцию - нечто, что он называет «квантовый вакуумный плазменный двигатель» (QVPT). Это приспособление внешне похоже на огромный красный бархатный пончик с проводами, плотно оплетающими сердцевину. Это одна из двух инициатив Eagleworks (вторая - деформационный двигатель). Еще это секретная разработка. Когда я спрашиваю, что это, Уайт отвечает, что может сказать только, что эта технология даже круче, чем деформационный двигатель). Согласно отчету NASA за 2011 год, написанному Уайтом, аппарат использует квантовые флуктации в пустом пространстве в качестве источника топлива, а значит, космический корабль, приводимый в движение QVPT, не требует топлива.


Двигатель использует квантовые флуктации в пустом пространстве в качестве источника топлива,
а значит, космический корабль,
приводимый в движение QVPT, не требует топлива.

Когда девайс работает, система Уайта выглядит кинематографически идеально: цвет лазера красный, и два луча скрещены, как сабли. Внутри кольца находятся четыре керамических конденсатора, сделанных из титаната бария, который Уайт заряжает до 23 тысяч вольт. Уайт провел последние два с половиной года, разрабатывая эксперимент, и он говорит, что конденсаторы демонстрируют огромную потенциальную энергию. Однако, когда я спрашиваю, как создать отрицательную энергию, необходимую для деформированного пространства-времени, он уклоняется от ответа. Он объясняет, что подписал соглашение о неразглашении, и потому не может раскрывать подробности. Я спрашиваю, с кем он заключал эти соглашения. Он говорит: «С людьми. Они приходят и хотят поговорить. Больше подробностей я вам сообщить не могу».

ПРОТИВНИКИ ИДЕИ ДВИГАТЕЛЯ

Пока что теория деформированного путешествия довольно интуитивна - деформация времени и пространства, чтобы создать движущийся пузырь, - и в ней есть несколько значительных недостатков. Даже если Уайт значительно уменьшит количество отрицательной энергии, запрашиваемой Алькубьерре, ее все равно потребуется больше, чем способны произвести ученые, заявляет Лоуренс Форд, физик-теоретик в университете Тафтс, за последние 30 лет написавший множество статей на тему отрицательной энергии. Форд и другие физики заявляют, что есть фундаментальные физические ограничения, причем дело не столько в инженерных несовершенствах, сколько в том, что такое количество отрицательной энергии не может существовать в одном месте длительное время.

Другая сложность: для создания деформационного шара, который двигается быстрее света, ученым потребуется произвести отрицательную энергию вокруг космического корабля и в том числе над ним. Уайт не считает, что это проблема; он весьма туманно отвечает, что двигатель, скорее всего, будет работать благодаря некоему имеющемуся «аппарату, который создает необходимые условия». Однако создание этих условий перед кораблем будет означать обеспечение постоянной поставки отрицательной энергии, перемещаемой быстрей скорости света, что снова противоречит общей теории относительности.

Наконец, двигатель деформации пространства ставит концептуальный вопрос. В общей теории относительности путешествие на сверхсветовой скорости эквивалентно путешествию во времени. Если такой двигатель реален, Уайт создает машину времени.

Эти препятствия рождают некоторые серьезные сомнения. «Не думаю, что известная нам физика и ее законы позволяют допустить, что он чего-то добьется своими экспериментами», - говорит Кен Олум, физик из университета Тафтс, который также участвовал в дебатах насчет экзотического движения на собрании «100-летия звездного корабля». Ноа Грэхам, физик из колледжа Миддлбёри, читавший две работы Уайта по моей просьбе, написал мне e-mail: «Не вижу ценных научных доказательств, помимо отсылок к его предыдущим работам».

Алькубьерре, ныне физик в Национальном автономном университете Мексики, и сам высказывает сомнение. «Даже если я стою на космическом корабле и у меня есть в наличии отрицательная энергия, мне ни за что не поместить ее туда, куда требуется, - говорит он мне по телефону из своего дома в Мехико. - Нет, идея-то волшебная, мне нравится, я же ее сам и написал. Но в ней есть пара серьезных недостатков, которые я уже сейчас, с годами, вижу, и я не знаю ни единого способа их исправить».

БУДУЩЕЕ СВЕРХСКОРОСТЕЙ

Слева от главных ворот Джонсонского научного центра лежит на боку ракета «Сатурн-В», ее ступени разъединены для демонстрации внутреннего содержимого. Он гигантский - размер одного из множества двигателей равен размеру маленького автомобиля, а сама ракета на пару футов длиннее, чем футбольное поле. Это, конечно, вполне красноречивое свидетельство особенностей космического плавания. Кроме того, ей 40 лет, и время, которое она представляет - когда NASA было частью огромного национального плана по отправлению человека не Луну, - давно прошло. Сегодня JSC - это просто место, которое когда-то было великим, но с тех пор покинуло космический авангард.

Прорыв в движении может означать новую эру для JSC и NASA, и в какой-то степени часть этой эры начинается уже сейчас. Зонд Dawn («Рассвет»), запущенный в 2007-м, изучает кольцо астероидов при помощи ионных двигателей. В 2010-м японцы ввели в эксплуатацию «Икар», первый межпланетный звездный корабль, приводимый в движение солнечным парусом, еще один вид экспериментального движения. И в 2016-м ученые планируют испытать VASMIR, систему, работающую на плазме, сделанную специально для высокой двигательной тяги в ISS. Но когда эти системы, возможно, доставят астронавтов на Марс, они все еще не будут способны забросить их за пределы Солнечной системы. Чтобы добиться этого, по словам Уайта, NASA потребуется пойти на более рискованные проекты.


Деформационный двигатель - возможно, самое притянутое за уши из насовских усилий по созданию проектов движения. Научное сообщество заявляет, что Уайт не может создать его. Эксперты заявляют, что он работает против законов природы и физики. Несмотря на это, за проектом стоит NASA. «Его субсидируют не на том высоком государственном уровне, на котором должны были бы, - говорит Апплуайт. - Я думаю, что у дирекции есть какой-то особенный интерес в том, чтобы он продолжал свою работу; это одна из тех теоретических концепций, в случае успехов которых игра меняется полностью».

В январе Уайт собрал свой деформационный интерферометр и двинулся к следующей цели. Eagleworks перерос собственный дом. Новая лаборатория больше и, как он заявляет с энтузиазмом, «сейсмически изолирована», имея в виду, что он защищен от колебаний. Но, возможно, лучшее в новой лаборатории (и самое впечатляющее) - то, что NASA создало Уайту такие же условия, что были у Нила Армстронга и Базза Олдрина на Луне. Что ж, посмотрим.

Астрофизики из Университета Бэйлора (США) разработали математическую модель гиперпространственного привода, позволяющего преодолевать космические расстояния со скоростью выше скорости света в 10³² раз, что позволяет в течение пары часов слетать в соседнюю галактику и вернуться обратно.

При полете люди не будут ощущать перегрузок, которые ощущаются в современных авиалайнерах, правда, в металле такой двигатель сможет появиться разве что через несколько сотен лет.

Механизм действия привода основан на принципе двигателя деформации пространства (Warp Drive), который предложил в 1994 г. мексиканский физик Мигель Алькубиерре. Американцам осталось лишь доработать модель и произвести более детальные подсчеты.
"Если перед кораблем сжимать пространство, а позади него, наоборот, расширять, то вокруг корабля появляется пространственно-временной пузырь, - говорит один из авторов исследования , Ричард Обоуси. - Он окутывает корабль и вырывает его из обычного мира в свою систему координат. За счет разницы давления пространства-времени этот пузырь способен двигаться в любом направлении, преодолевая световой порог на тысячи порядков".

Предположительно, деформироваться пространство вокруг корабля сможет за счет малоизученной пока темной энергии. "Темная энергия - очень плохо изученная субстанция, открытая сравнительно недавно и объясняющая, почему галактики как бы разлетаются друг от друга, - рассказал старший научный сотрудник отдела релятивистской астрофизики Государственного астрономического института им. Штернберга МГУ Сергей Попов. - Существует несколько ее моделей, но какой-то общепринятой пока нет. Американцы взяли за основу модель, основанную на дополнительных измерениях, и говорят, что можно локально менять свойства этих измерений. Тогда получится, что в разных направлениях могут быть разные космологические константы. И тогда корабль в пузыре начнет двигаться".

Объяснить такое "поведение" Вселенной может "теория струн", согласно которой все наше пространство пронизано множеством других измерений. Их взаимодействие между собой порождает отталкивающую силу, которая способна расширять не только вещество, как, например, галактики, но и само тело пространства. Этот эффект получил название "инфляция Вселенной".

"С первых секунд своего существования Вселенная растягивается, - поясняет доктор физико-математических наук, сотрудник Астро-космического центра Физического института им. Лебедева Руслан Мецаев. - И этот процесс продолжается до сих пор". Зная все это, можно попытаться расширять или сужать пространство искусственно. Для этого предполагается воздействовать на иные измерения, тем самым кусок пространства нашего мира начнет движение в нужном направлении под действием сил темной энергии.

При этом законы теории относительности не нарушаются. Внутри пузыря останутся те же самые законы физического мира, а скорость света будет предельной. На эту ситуацию не распространяется и так называемый эффект близнецов, повествующий о том, что при космических путешествиях со световыми скоростями время внутри корабля значительно замедляется и космонавт, вернувшись на Землю, встретит своего брата-близнеца уже глубоким стариком. Двигатель Warp Drive избавляет от этой неприятности, потому как толкает пространство, а не корабль.

Американцы уже подыскали и цель для будущего полета. Это планета Gliese 581 (Глизе 581), на которой климатические условия и сила тяжести приближаются к земным. Расстояние до нее составляет 20 световых лет, и даже при условии, что Warp Drive будет работать в триллионы раз слабее максимальной мощности, время в пути до нее составит всего несколько секунд.

Для справки, экстрасолнечная планета Глизе 581 (планетная система) - красный карлик, расположенный в созвездии Весов, в 20,4 св. лет от Земли. Масса звезды составляет приблизительно треть от массы Солнца. Глизе 581 находится в списке ста ближайших к нашей солнечной системе звёзд . В телескоп Глизе 581 следует искать в двух градусах севернее β Весов.

Материал подготовлен редакцией rian.ru на основе информации РИА Новости и открытых источников

Даже если бы мы смогли сконструировать прототипы кораблей, выдуманных учеными из NASA и способных двигаться с релятивистской скоростью, а также нашли бы неприлично большой источник энергии, необходимой для того, чтобы запустить их в небеса, наше путешествие оказалось бы вовсе не таким приятным, как может показаться с борта «Тысячелетнего сокола». От возможности летать к соседним звездам нас отделяют отнюдь не технологии - это лишь вопрос нескольких веков. Проблема заключается в том, насколько опасен космос, если он превращается в среду обитания, и насколько хрупким на самом деле может оказаться человеческое тело.

Если бы мы стали перемещаться со скоростью света (300 000 км/с) в межзвездном пространстве, то погибли бы через пару секунд. Несмотря на то что плотность вещества в космосе очень низкая, на такой скорости даже несколько атомов водорода на кубический сантиметр врежутся в носовую часть корабля с ускорением, которое на Земле достижимо лишь на Большом адронном коллайдере. Из-за этого мы получим дозу излучения, равную десяти тысячам зивертов в секунду. Учитывая, что смертельная доза для человека составляет шесть зивертов, такой радиоактивный луч повредит корабль и уничтожит все живое на борту.

«Если бы мы стали перемещаться со скоростью света в космосе, то погибли бы через пару секунд»

Согласно исследованиям ученых из Университета Джонса Хопкинса, никакая броня не может уберечь нас от этой ионизирующей радиации. Переборка из алюминия толщиной десять сантиметров в таком случае поглотит меньше 1% энергии - а ведь размеры переборок невозможно увеличивать бесконечно, не рискуя возможностью взлететь. Однако помимо радиоактивного водорода нашему космолету на скорости света будет угрожать эрозия, возникающая из-за воздействия межзвездной пыли. В лучшем случае нам придется согласиться на 10% от скорости света, что позволит с большим трудом достичь лишь самой близкой звезды - Проксимы Центавра. С учетом расстояния в 4,22 светового года такой полет займет 40 лет - то есть одну неполную человеческую жизнь.

Космическая радиация пока остается для нас непреодолимым препятствием, однако, если в далеком будущем мы сможем его преодолеть, путешествие со скоростью света окажется самым невероятным переживанием, которое только доступно человеку. На такой скорости время замедлится, и старение станет намного более протяженным процессом (ведь даже космонавты на МКС за шесть месяцев успевают состариться на 0,007 секунды меньше, чем люди на Земле). Наше зрительное поле во время такого полета искривится, превратившись в туннель. Мы будем лететь по этому туннелю вперед, к сияющей белоснежной вспышке, не видя следов от звезд и оставляя за спиной самую кромешную, самую абсолютную темноту, какую только можно себе представить.

1) Освещает ли свет фар другие объекты и отражается обратно в глаза?

Нет. Как известно, нельзя превысить скорость света. Это означает, что в одном из направлений свет вообще не может светить, потому что не способен превысить скорость автомобиля, так что никогда не выйдет из фар. Однако, мы живём в многомерном мире и не весь свет светит в одном направлении.

Представим двухмерный автомобиль без массы (то есть двигающийся со скоростью света), который излучил два фотона, один вверх, а другой вниз. Два луча отделяются от автомобиля и остаются позади него. Они двигаются с такой же скоростью света, но не могут двигаться вперёд настолько же быстро, поскольку один из векторов скорости направлен вверх/вниз, поэтому мы обгоняем их. Эти фотоны затем встречают на своём пути какое-то препятствие, например, дорожный указатель или дерево, и отражаются обратно. Проблема в том, что они уже не могут догнать вас. Другие люди, идущие по тротуару, способны видеть отражённый свет, но вы уже уехали и никогда его не увидите.

Вот пожалуйста, всё можно объяснить на одном только факте, что весь свет двигается с одинаковой скоростью, неважно куда. Это едва ли имеет отношение к теории относительности.

Однако, существует и более хардкорная версия.

2) Могут ли вещи, двигающиеся со скоростью света, иметь фары? Могут ли они вообще иметь зрение?

Вот где сумасшедшая истина теории относительности по-настоящему вступает в игру, так что не нужно стыдиться, если чего-то не поймёте, но ответ опять выходит отрицательным.

Возможно, вам знакома концепция релятивистского замедления времени. Предположим, я с другом садимся в разные поезда и едем навстречу. Проезжая мимо, если мы посмотрим через окно на настенные часы в купе друг у друга, то оба заметим, что они идут медленнее обычного. Это не потому что часы тормозят, а потому что вступает в дело свет между нами: чем быстрее мы двигаемся, тем медленнее стареем относительно менее подвижных объектов. Это потому что время не является абсолютным для всех объектов во Вселенной, оно своё у каждого объекта и зависит от его скорости. Наше время зависит только от нашей скорости во Вселенной. Вы можете представить это как движение в разных направлениях на шкале пространства-времени. Здесь есть определённая проблема, потому что наш мозг не приспособлен для понимания геометрии пространства-времени, а склонен представлять время как некий абсолют. Тем не менее, почитав немного литературы на эту тему, вы нормально сможете воспринимать как естественный факт: те, кто двигаются быстро относительно вас, стареют медленнее.

Предположим, что ваш друг сидит в гипотетической машине и мчится со скоростью света. Итак, подставим его скорость в нашу формулу и посмотрим, каков будет ответ.

Ой-ёй! Похоже, у него вообще не прошло никакого времени! Наверное, что-то неправильно с нашими вычислениями?! Выясняется, что нет. Времени. Не. Существует. Для. Объектов. На. Скорости. Света.

Его просто нет.

Это значит, что вещи на скорости света не могут воспринимать «происходящие» события таким же образом, как воспринимаем мы. События не могут происходить для них. Они могут совершать действия, но не могут получать опыт. Сам Эйнштейн однажды сказал: «Время существует, чтобы всё не происходило одновременно» («Time exists so that everything doesn"t happen at once»). Это координата, спроектированная для построения событий в осмысленную последовательность, так что мы можем понять, что происходит. Но для объекта, который двигается на скорости света, этот принцип не работает, потому что всё происходит одновременно. Путешественник на скорости света никогда не увидит, не подумает и не почувствует чего-то, что мы считаем осмысленным.

Вот такой неожиданный вывод.

20-й век ознаменовался величайшими открытиями в области физики и космологии. Основами этих открытий стали теории, разработанные плеядой выдающихся физиков. Самым знаменитым из них является Альберт Эйнштейн, на работах которого во многом основывается современная физика. Из теорий ученого следует, что скорость света в вакууме является предельной скоростью движения частиц и взаимодействия. А вытекающие из этих теорий временные парадоксы и вовсе изумляют: так для движущихся объектов время течет медленнее относительно покоящихся, причем чем ближе к скорости света, тем больше замедляется время. Получается, что для объекта, летящего со скоростью света, время полностью остановится.

Рекомендуем

Это дает нам надежду, что при должном уровне технологий, теоретически человек способен в течение жизни одного поколения достичь самых удаленных уголков Вселенной. При этом время полета в земной системе отсчета будет составлять миллионы лет, тогда как на корабле, летящем с околосветовой скоростью, пройдет всего несколько дней… Такие возможности впечатляют, и при этом появляется вопрос: если физики и инженеры будущего каким-то образом разгонят космический корабль до огромных величин, пусть даже теоретически до скорости света (хотя наша физика отрицает такую возможность), сможем ли мы достичь не только самых далеких галактик и звезд, но и края нашей Вселенной, взглянуть за границу неведомого, о чем у ученых нет никаких представлений?

Мы знаем, что Вселенная образовалась около 13,79 млрд. лет назад и с тех пор непрерывно расширяется. Можно было бы предположить, что ее радиус в данный момент должен составлять 13,79 млрд. световых лет, а диаметр, соответственно, 27,58 млрд. световых лет. И это было бы верно, если Вселенная расширялась равномерно со скоростью света – максимальной возможной скоростью. Но полученные данные говорят нам о том, что Вселенная расширяется с ускорением.

Мы наблюдаем, что наиболее удаленные от нас галактики удаляются от нас быстрее, чем находящиеся неподалеку – пространство нашего мира непрерывно расширяется. При этом существует часть Вселенной, которая удаляется от нас быстрее скорости света. При этом никакие постулаты и выводы теории относительности не нарушаются – внутри Вселенной у объектов остаются досветовые скорости. Эту часть Вселенной невозможно увидеть — скорости испущенных источниками излучения фотонов просто недостаточно, чтобы преодолеть скорость расширения пространства.

Вычисления показывают, что видимая для нас часть нашего мира имеет диаметр около 93 млрд. световых лет и носит название Метагалактика . О том, что находится за этой границей и насколько далеко простирается Вселенная, мы можем только догадываться. Логично предположить, что край Вселенной удаляется от нас быстрее всего и намного превышает скорость света. И скорость эта постоянно возрастает. Становится очевидным, что если даже какой-то объект будет лететь со скоростью света, то края Вселенной он никогда не достигнет, потому что край Вселенной будет удаляться от него быстрее.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .