Мощность в фотоэффекте формула. Фотоэффект

Введение

1. История открытия фотоэффекта

2. Законы Столетова

3. Уравнение Эйнштейна

4. Внутренний фотоэффект

5. Применение явления фотоэффекта

Список литературы


Введение

Многочисленные оптические явления непротиворечиво объясняли, исходя из представлений о волновой природе света. Однако в конце XIX – начале XX в. были открыты и изучены такие явления, как фотоэффект, рентгеновское излучение, эффект Комптона, излучение атомов и молекул, тепловое излучение и другие, объяснение которых с волновой точки зрения оказалось невозможным. Объяснение новых экспериментальных фактов было получено на основе корпускулярных представлений о природе света. Возникла парадоксальная ситуация, связанная с применением совершенно противоположных физических моделей волны и частицы для объяснения оптических явлений. В одних явлениях свет проявлял волновые свойства, в других – корпускулярные.

Среди разнообразных явлений, в которых проявляется воздействие света на вещество, важное место занимает фотоэлектрический эффект , то есть испускание электронов веществом под действием света. Анализ этого явления привел к представлению о световых квантах и сыграл чрезвычайно важную роль в развитии современных теоретических представлений. Вместе с тем фотоэлектрический эффект используется в фотоэлементах получивших исключительно широкое применение в разнообразнейших областях науки и техники и обещающих еще более богатые перспективы.

1. История открытия фотоэффекта

Открытие фотоэффекта следует отнести к 1887 г., когда Герц обнаружил, что освещение ультрафиолетовым светом электродов искрового промежутка, находящегося под напряжением, облегчает проскакивание искры между ними.

Явление, обнаруженное Герцом, можно наблюдать на следующем легко осуществимом опыте (рис. 1).

Величина искрового промежутка F подбирается таким образом, что в схеме, состоящей из трансформатора Т и конденсатора С, искра проскакивает с трудом (один – два раза в минуту). Если осветить электроды F, сделанные из чистого цинка, светом ртутной лампы Hg, то разряд конденсатора значительно облегчается: искра начинает проскакивать Рис. 1. Схема опыта Герца.

Фотоэффект был объяснён в 1905 году Альбертом Эйнштейном (за что в 1921 году он получил Нобелевскую премию) на основе гипотезы Макса Планка о квантовой природе света. В работе Эйнштейна содержалась важная новая гипотеза – если Планк предположил, что свет излучается только квантованными порциями, то Эйнштейн уже считал, что свет и существует только в виде квантовых порций. Из представления о свете как о частицах (фотонах) немедленно следует формула Эйнштейна для фотоэффекта:

, – кинетическая энергия вылетающего электрона, – работа выхода для данного вещества, – частота падающего света, – постоянная Планка, которая оказалась ровно той же, что и в формуле Планка для излучения абсолютно чёрного тела.

Из этой формулы следует существование красной границы фотоэффекта. Таким образом, исследования фотоэффекта были одними из самых первых квантово – механических исследований.

2. Законы Столетова

Впервые (1888–1890), подробно анализируя явление фотоэффекта, русский физик А.Г. Столетов получил принципиально важные результаты. В отличие от предыдущих исследователей он брал малую разность потенциалов между электродами. Схема опыта Столетова представлена на рис. 2.

Два электрода (один в виде сетки, другой – плоский), находящиеся в вакууме, присоединены к батарее. Включенный в цепь амперметр служит для измерения возникающей силы тока. Облучая катод светом различных длин волн, Столетов пришел к выводу, что наиболее эффективное действие оказывают ультрафиолетовые лучи. Кроме того, было установлено, что сила тока, возникающего под действием света, прямо пропорциональна его интенсивности.

В 1898 г. Ленард и Томсон методом отклонения зарядов в электрическом и магнитном полях определили удельный заряд заряженных частиц, вырываемых Рис. 2. Схема опыта Столетова.

светом из катода, и получили выражение

СГСЕ ед. з/г, совпадающее с известным удельным зарядом электрона. Отсюда следовало, что под действием света происходит вырывание электронов из вещества катода.

Путем обобщения полученных результатов были установлены следующие закономерности фотоэффекта:

1. При неизменном спектральном составе света сила фототока насыщения прямо пропорциональна падающему на катод световому потоку.

2. Начальная кинетическая энергия вырванных светом электронов линейно растет с ростом частоты света и не зависит от его интенсивности.

3. Фотоэффект не возникает, если частота света меньше некоторой характерной для каждого металла величины

, называемой красной границей.

Первую закономерность фотоэффекта, а также возникновение самого фотоэффекта легко объяснить, исходя из законов классической физики. Действительно, световое поле, воздействуя на электроны внутри металла, возбуждает их колебания. Амплитуда вынужденных колебаний может достичь такого значения, при котором электроны покидают металл; тогда и наблюдается фотоэффект.

Ввиду того, что согласно классической теории интенсивность света прямо пропорциональна квадрату электрического вектора, число вырванных электронов растет с увеличением интенсивности света.

Вторая и третья закономерности фотоэффекта законами классической физики не объясняются.

Изучая зависимость фототока (рис. 3), возникающего при облучении металла потоком монохроматического света, от разности потенциалов между электродами (такая зависимость обычно называется вольт – амперной характеристикой фототока), установили, что: 1) фототок возникает не только при

, но и при ; 2) фототок отличен от нуля до строго определенного для данного металла отрицательного значения разности потенциалов , так называемого задерживающего потенциала; 3) величина запирающего (задерживающего) потенциала не зависит от интенсивности падающего света; 4) фототок растет с уменьшением абсолютного значения задерживающего потенциала; 5) величина фототока растет с ростом и с какого-то определенного значения фототок (так называемый ток насыщения) становится постоянным; 6) величина тока насыщения растет с увеличением интенсивности падающего света; 7) величина задерживающего Рис. 3. Характеристика

потенциала зависит от частоты падающего света; фототока.

8) скорость вырванных под действием света электронов не зависит от интенсивности света, а зависит только от его частоты.


3. Уравнение Эйнштейна

Явление фотоэффекта и все его закономерности хорошо объясняются с помощью квантовой теории света, что подтверждает квантовую природу света.

Как уже было отмечено, Эйнштейн (1905 г.), развивая квантовую теорию Планка, выдвинул идею, согласно которой не только излучение и поглощение, но и распространение света происходит порциями (квантами), энергия и импульс которых.

ЯГМА

Медицинская физика

Лечебный факультет

1 Курс

2 семестр

Лекция № 9

« Фотоэффект »

Составил: Бабенко Н.И..

2011 г.

    Фотоэффект. Законы внешнего фотоэффекта.

Фотоэффект – группа явлений, связанных с испусканием электронов возбужденными атомами вещества за счет энергии поглощенных фотонов. Открыт немецким ученым Герцем в 1887 году. Экспериментально изучен русским ученым А.Г. Столетовым (1888 – 1890г.г.).Теоретически объяснен А. Эйнштейном (1905 г.).

Виды фотоэффекта.

    Внутренний фотоэффект:

а. Изменение проводимости среды под действием света, фоторезистивный эффект , характерен для полупроводников.

б. Изменение диэлектрической проницаемости среды под действием света, фотодиэлектрический эффект, характерен для диэлектриков.

в. Возникновение фото ЭДС, фотогальванический эффект , характерен для неоднородных полупроводников p и n -типа.

    Внешний фотоэффект:

Это явление выхода (эмиссии) электронов из вещества в вакуум за счет энергии поглощенных фотонов.

Фотоэлектроны – это электроны вырванные из атомов вещества за счет фотоэффекта.

Фототок – это электрический ток, образованный упорядоченным движением фотоэлектронов во внешнем электрическом поле.

Свет (Ф) «К» и «А» - электроды,

помещенные в вакуум

«V» - фиксирует напряжение

между электродами

«G» - фиксирует фототок

К(-) А (+) «П» - потенциометр для

изменения напряжения

«Ф» - световой поток

Рис. 1. Установка для изучения законов внешнего фотоэффекта.

I Закон внешнего фотоэффекта (закон Столетова).

С
ила фототока насыщения (т. е. количество электронов, испускаемых с катода в единицу времени) пропорциональна световому потоку, падающему на металл (Рис. 2).

где k – коэффициент пропорциональности, или чувствительности металла к фотоэффекту

Рис. 2. Зависимость фототоков насыщения (I 1 , I 2 , I 3) от интенсивности световых потоков: Ф 1 > Ф 2 > Ф 3 .Частота падающих световых потоков постоянна.

II закон фотоэффекта (закон Эйнштейна - Ленарда).

Если поменять местами полюса батареи источника ((К(+), А(-)), то между катодом (К) и анодом (А) возникает электрическое поле, которое тормозит движение электронов. При некотором запирающем значении обратного напряжения Uз фототок равен 0 (Рис. 3).

Рис. 3. Зависимость фототоков насыщения для разных частот падающего света при постоянной интенсивности падающего света.

В этом случае электроны вылетающие с катода, даже с максимальной скоростью Vmax, не смогут пройти через запирающее поле.

Измерив значение запирающего напряжения Uз, можно определить максимальную кинетическую энергию E k max выбиваемых излучением электронов. При изменении интенсивности светового потока Ф, максимальная кинетическая энергия E k max не изменяется, но если увеличить частоту электромагнитного излучения (сменить видимый свет на ультрафиолетовый), то максимальная кинетическая энергия E k max фотоэлектронов увеличится.

Н
ачальная кинетическая энергия фотоэлектрона пропорциональна частоте падающего излучения и не зависит от его интенсивности.

где h постоянная Планка, v частота падающего света.

III закон внешнего фотоэффекта (Закон красной границы).

Если последовательно облучать катод различными монохроматическими излучениями, можно обнаружить, что с увеличением длины волны λ, энергия фотоэлектронов уменьшается и при некотором значении длины волны λ, внешний фотоэффект прекращается.

Наибольшее значение длины волны λ ( или наименьшее значение частоты v ) при которой внешний фотоэффект еще имеет место, называется красной границей фотоэффекта для данного вещества.

Для серебра λкр = 260нм

Для цезия λкр =>620 нм

2. Уравнение Энштейна и его применение к трем законам фотоэффекта.

В
1905 году Энштейн дополнил теорию Планка предположив/, что свет, взаимодействуя с веществом, поглощается такими же элементарными порциями (квантами, фотонами), какими он по теории Планка и испускается.

Фотон – это частица, не обладающая массой покоя (m 0 =0), и движущаяся со скоростью, равной скорости света в вакууме (c=3·10 8 м/с).

Квант –- порция энергии фотона.

В основе уравнения Эйнштейна для фотоэффекта лежат три постулата:

1. Фотоны взаимодействуют с электронами атома вещества и полностью поглощаются ими.

2. Один фотон взаимодействует только с одним электроном.

3. Каждый поглощенный фотон освобождает один электрон. При этом энергия фотона «ħλ» расходуется на работу выхода «ē» с поверхности вещества А вых и на сообщене ему кинетической энергии


ћ·ν = ћ· =
- уравнение Эйнштейна

Эта энергия «ħν» -будет максимальной, если электроны отрываются от поверхности.

Применение уравнения к объяснению трех законов фотоэффекта.

К I закону:

При увеличении интенсивности монохроматичного излучения растет число поглощенных металлом квантов, поэтому растет и число вылетающих из него электронов и растет сила фототока:

Ко II закону:

И
з уравнения Эйнштейна:

Т.е. Е k max фотоэлектрона зависит только от рода металла (А вых.) и от частоты ν(λ) падающего излучения и не зависит от интенсивности излучения (Ф).

К III закону:

ħν<А вых – то при любой интенсивности излученя фотоэффекта не будет, т.к. этой энергии фотона не хватит, чтобы вырвать ē из вещества.

ħν>А вых – фотоэффект наблюдается, так как энергии фотона хватит и на работу выхода А вых., и на сообщение ē кинетической энергии Е к max .

ħν=А вых – граница фотоэффекта при которой

и энергии фотона хватает только на выход ē с поверхности металла.


В этом случае уравнение Эйнштейна имеет вид:

Красная граница фотоэффекта

Фотоэффект- это явление вырывания света электронов из металла(внешний)

Фотоэффе́кт - это испускание электронов веществом под действием света (или любого другого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитных излучений. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком.

Внутренним фотоэффектом называется перераспределение электронов по энергетическим состояниям в твёрдых и жидких полупроводниках и диэлектриках, происходящее под действием излучений. Он проявляется в изменении концентрации носителей зарядов в среде и приводит к возникновению фотопроводимости иливентильного фотоэффекта.

Фотопроводимостью называется увеличение электрической проводимости вещества под действием излучения.

Вентильный фотоэффект является разновидностью внутреннего фотоэффекта, – это возникновение ЭДС (фото ЭДС) при освещении контакта двух разных полупроводников или полупроводника и металла (при отсутствии внешнего электрического поля). Вентильный фотоэффект открывает пути для прямого преобразования солнечной энергии в электрическую.

Многофотонный фотоэффект возможен, если интенсивность света очень большая (например, при использовании лазерных пучков). При этом электрон, испускаемый металлом, может одновременно получить энергию не от одного, а от нескольких фотонов.

Законы Столетова

Первый закон
Исследуя зависимость силы тока в баллоне от напряжения между электродами при постоянном световом потоке на один из них, он установил первый закон фотоэффекта.

Фототок насыщения пропорционален световому потоку, падающему на металл.

T.к. сила тока определяется величиной заряда, a световой поток - энергией светового пучка, то можно сказать:

число электронов, выбиваемых за 1 c из вещества, пропорционально интенсивности света, падающего на это вещество.

Второй закон

Изменяя условия освещения на этой же установке, A. Г. Столетов открыл второй закон фотоэффекта: кинетическая энергия фотоэлектронов не зависит от интенсивности падающего света, a зависит от его частоты.

Из опыта следовало, что если частоту света увеличить, то при неизменном световом потоке запирающее напряжение увеличивается, a, следовательно, увеличивается и кинетическая энергия фотоэлектронов. Таким образом, кинетическая энергия фотоэлектронов линейно возрастает c частотой света.


Третий закон

Заменяя в приборе материал фотокатода, Столетов установил третий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, т. e. существует наименьшая частота nmin, при которой еще возможен фотоэффект.

Закон сохранения энергии, записанный Эйнштейном для фотоэффекта, состоит в утверждении, что энергия фотона, приобретенная электроном, позволяет ему покинуть поверхность проводника, совершив работу выхода. Остаток энергии реализуется в виде кинетической энергии теперь уже свободного электрона

Энергия падающего фотона расходуется на совершение электроном работы вы­хода А из металла и на сообщение вылетевшему фотоэлектрону кинетичес­кой энергии mv2max/2. По закону сохранения энергии,

(203.1)

Уравнение (203.1) называется уравнением Эйнштейна для внешнего фотоэффекта.

Эффект Комптона

Изменение длины волны света при рассеивании на связанных электронов

ОПЫТЫ РЕЗЕРФОРДА.ПЛАНЕТАРНАЯ МОДЕЛЬ АТОМА

Опыты Резерфорда. Масса электронов в несколько тысяч раз меньше массы атомов. Так как атом в целом нейтрален, то, следовательно, основная масса атома приходится на его положительно заряженную часть.

Для экспериментального исследования распределения положительного заряда, а значит, и массы внутри атома Эрнест Резерфорд предложил в 1906 г. применить зондирование атома с помощью -частиц. Эти частицы возникают при распаде радия и некоторых других элементов. Их масса примерно в 8000 раз больше массы электрона, а положительный заряд равен по модулю удвоенному заряду электрона. Это не что иное, как полностью ионизированные атомы гелия. Скорость -частиц очень велика: она составляет 1/15 скорости света.

Этими частицами Резерфорд бомбардировал атомы тяжелых элементов. Электроны вследствие своей малой массы не могут заметно изменить траекторию -частицы, подобно тому как камушек в несколько десятков граммов при столкновении с автомобилем не может значительно изменить его скорость.

Планетарная модель атома. На основе своих опытов Резерфорд создал планетарную модель атома. В центре атома расположено положительно заряженное ядро, в котором сосредоточена почти вся масса атома. В целом атом нейтрален. Поэтому число внутриатомных электронов, как и заряд ядра, равно порядковому номеру элемента в периодической системе. Ясно, что покоиться электроны внутри атома не могут, так как они упали бы на ядро. Они движутся вокруг ядра, подобно тому как планеты обращаются вокруг Солнца. Такой характер движения электронов определяется действием кулоновских сил притяжения со стороны ядра.

Называется совокупность методов измерения температуры тел, основанных на законах теплового излучения. Приборы, применяемые для этого, называются пирометрами.

Эти методы очень удобны для измерения температур различных объектов, где сложно или вообще невозможно применить традиционные контактные датчики. Это относится в первую очередь к измерению высоких температур.

В оптической пирометрии различают следующие температуры тела: радиационную (когда измерение проводится в широком интервале длин волн), цветовую (когда в узком интервале - интервале видимого света), яркостную (на одной длине волны).

1. Радиационная температура Т р - это температура абсолютно чёрного тела, при которой его энергетическая светимость R равна энергетической светимости R m данного тела в широком диапазоне длин волн.

Если же измерить мощность, излучаемую некоторым телом с единицы поверхности в достаточно широком интервале волн и ее величинусопоставить с энергетической светимостью абсолютно черного тела, то можно, используя формулу (11), вычислить температуру этого тела, как

Определенная таким способом температура T p будет достаточно точно соответствовать истинной температуре T только в том случае, если исследуемое тело - абсолютно черное.

Для серого тела закон Стефана-Больцмана может быть записан в виде

R m (T) = α T σT 4 ; где α T < 1.

Подставляя данное выражение в формулу (1) получаем

Для серого тела значение радиационной температуры оказывается заниженным (T p < T ), т.е. истинная температура серого тела всегда выше радиационной.

2. Цветовая температура Т ц - это температура абсолютно чёрного тела, при которой относительные распределения спектральной плотности энергетической светимости этого тела и рассматриваемого тела максимально близки в видимой области спектра.

Обычно для определения цветовой температуры выбирают длины волн λ 1 = 655 нм (красный цвет), λ 2 = 470 нм (зелено-голубой цвет). Спектральная плотность энергетической светимости серых тел (или тел близких к ним по свойствам) с точностью до постоянного коэффициента (коэффициента монохроматического поглощения) пропорциональна спектральная плотность энергетической светимости абсолютно черного тела. Следовательно, распределение энергии в спектре серого тела такое же, как и в спектре абсолютно черного тела при той же температуре.

Для определения температуры серого тела достаточно измерить мощность I (λ,Т) , излучаемую единицей поверхности тела в достаточно узком спектральном интервале (пропорциональную r (λ,Т) ), для двух различных волн. Отношение I (λ,Т) для двух длин волн равно отношению зависимостей f (λ,Т) для этих волн, вид которых дается формулой (2) предыдущего параграфа:


(2)

Из данного равенства можно математическим путем получить температуру Т . Полученная таким образом температура называется цветовой. Цветовая температура тела, определенная по формуле (2), будет соответствовать истинной.

Цветовую температуру серого тела, совпадающую с истинной, можно также найти из закона смещения Вина.

3. Яркостная температура (Т я) некоторого тела называется температура абсолютно чёрного тела, при которой его спектральная плотность энергетической светимости f (λ,T), для какой либо определённой длины волны, равна спектральной плотности, энергетической светимости r (λ,Т) данного тела для той же длины волны.

Так как для нечерного тела спектральная плотность энергетической светимости при определенной температуре будет всегда ниже чем у абсолютно черного тела, то истинная температура тела будет всегда выше яркостной.

В качестве яркостного пирометра используется пирометр с исчезающей нитью . Принцип определения температуры основан на визуальномсравнении яркости раскаленной нити лампы пирометра с яркостью изображения исследуемого объекта. Равенство яркостей, наблюдаемое через монохроматический светофильтр (обычно измерения проводят на длине волны λ = 660 нм), определяется по исчезновению изображения нити пирометрической лампы на фоне изображения раскаленного объекта. Накал нити лампы пирометра регулируется реостатом, а температура нити определяется по градуировочному графику, или таблице.

Пусть мы в результате измерений получили равенство яркостей нити пирометра и исследуемого объекта и по графику определилитемпературу нити пирометра Т 1 . Тогда,на основании формулы (3) можно записать:

f (λ,T 1) α 1 (λ,T 1) = f (λ ,T 2) α 2 (λ, T 2) ,

где α 1 (λ,T 1) и α 2 (λ,T 2) коэффициенты монохроматического поглощения материала нити пирометра и исследуемого объекта соответственно. T 1 и T 2 - температуры нити пирометра и объекта. Как видноиз данной формулы, равенство температур объекта и нити пирометра будут наблюдаться только тогда, когда будут, равны их коэффициенты монохроматического поглощения в наблюдаемой области спектра α 1 (λ,T 1) = α 2 (λ,T 2) . Если α 1 (λ,T 1) > α 2 (λ,T 2) , мы получим заниженное значение температуры объекта, при обратном соотношении - завышенное значение температуры.

Внешним фотоэффектом называется явление испускания электронов веществом под действием электромагнитного излучения. Внутренним фотоэффектом называется явление появление свободных электронов в веществе (полупроводниках) под действием электромагнитного излучения Связанные (или валентные) электроны становятся свободными (в пределах вещества). В результате уменьшается сопротивление вещества.

Законы внешнего фотоэффекта :

1. При неизменном спектральном составе излучения сила тока насыщения (или число фотоэлектронов, испускаемых катодом за единицу времени) прямо пропорциональна падающему на фотокатод потоку излучения (интенсивности излучения).

2. Для данного фотокатода максимальная начальная скорость фотоэлектронов, а, следовательно, их максимальная кинетическая энергия определяется частотой излучения и не зависит от его интенсивности.

3. Для каждого вещества существует красная граница фотоэффекта, т.е. минимальная частота излучения ν 0 , при которой еще возможен внешний фотоэффект. Отметим, что значение ν 0 зависит от материала фотокатода и состояния его поверхности.

Объяснение внешнего фотоэффекта с точки зрения волновой теории света противоречило экспериментальным данным. Согласно волновой теории под действием поля электромагнитной волны в металле возникают вынужденные колебания электронов в атоме с амплитудой тем большей, чем больше амплитуда вектора напряженности электрического поля волны E o (и, следовательно, интенсивность света I~E o 2).

В результате этого электроны могут покидать металл и выходить из него, т.е. может наблюдаться внешний фотоэффект. Тем выше должна быть и скорость вылетевших электронов, т.е. кинетическая энергия фотоэлектронов должна зависеть от интенсивности излучения, что противоречит опытным данным. По этой теории излучение любой частоты, но достаточно большой интенсивности должно вырывать электроны из металла, т.е. красной границы фотоэффекта не должно быть.

А. Эйнштейн в 1905 г. показал, что явление фотоэффекта и его закономерности могут быть объяснены на основе квантовой теории М. Планка . Согласно Эйнштейну, свет (излучение) частотой ν не только испускается, как это предполагал М. Планк, но и распространяется в пространстве и поглощается веществом отдельными порциями (квантами), энергия которых

E o = hν , (1)

где h = 6,626176*10 -34 Дж × с - постоянная Планка,

Позднее кванты излучения получили название фотонов . По Эйнштейну, каждый квант поглощается только одним электроном. Если энергия кванта больше чем работа выхода электрона из металла, т.е. hν >= А вых, то электрон может покинуть поверхность металла. Остаток энергии кванта идет на создание кинетической энергии электрона, покинувшего вещество. Если электрон освобождается излучением не у самой поверхности, а на некоторой глубине, то часть полученной энергии может быть потеряна вследствие случайных столкновений электрона в веществе, и его кинетическая энергия окажется меньшей. Следовательно, энергия падающего на вещество кванта излучения расходуется на совершение электроном работы выхода и сообщение вылетевшему фотоэлектрону кинетической энергии.

Закон сохранения энергии для такого процесса будет выражаться равенством

(2)

Это уравнение называется уравнением Эйнштейна для внешнего фотоэффекта .

Из уравнения Эйнштейна непосредственно следует, что максимальная кинетическая энергия или скорость фотоэлектрона зависит от частоты излучения. С уменьшением частоты излучения кинетическая энергия уменьшается и при некоторой частоте может стать равной нулю. Уравнение Эйнштейна в этом случае будет иметь вид

h ν 0 = А вых.

Частота ν 0 , соответствующая этому соотношению будет иметь минимальное значение и является красной границей фотоэффекта. Из последнего ясно, что красная граница фотоэффекта определяется работой выхода электрона и зависит от химической природы вещества и состояния его поверхности. Длина волны, соответствующая красной границе фотоэффекта, может быть рассчитана по формуле . При hν < А вых фотоэффект прекращается. Число высвобождаемых вследствие фотоэффекта электронов должно быть пропорционально числу падающих на поверхность вещества квантов излучения, а, следовательно, потоку излучения Ф.

С изобретением лазеров были получены большие мощности излучения, в этом случае один электрон может поглотить два и более (N) фотонов (N = 2…7). Такое явление называется многофотонным (нелинейным) фотоэффектом. Уравнение Эйнштейна для многофотонного фотоэффекта имеет вид

В этом случае красная граница фотоэффекта может смещаться в сторону более длинных волн.

Характер зависимости фототока I от разности потенциалов между анодом и катодом U (вольт - амперная характеристика или ВАХ) при постоянном потоке излучения на фотокатод монохроматического излучения приведен на Рис. 1.

Существование фототока при напряжении U = 0 объясняется тем, что фотоэлектроны, испускаемые катодом, имеют некоторую начальную скорость и, соответственно, кинетическую энергию, а, следовательно, могут достигать анода без внешнего электрического поля. По мере увеличения значения U (в случае положительного потенциала на аноде) фототок постепенно возрастает, т.е. все большее число фотоэлектронов достигает анода.

Пологий характер этого участка вольтамперной характеристики свидетельствует о том, что электроны вылетают из катода с различными скоростями. Максимальное значение фототока, называемое током насыщения I нас , достигается при таком значении U, при котором все электроны, испускаемые катодом, попадают на анод. Значение I нас. определяется числом фотоэлектронов, испускаемых катодом за 1 с и зависит от величины потока излучения, падающего на фотокатод.

Если анод имеет отрицательный потенциал, то образующееся электрическое поле тормозит движение фотоэлектронов. Это приводит к уменьшению числа электронов, достигающих анода, а, следовательно, и уменьшению фототока. Минимальное значение напряжения отрицательной полярности, при котором ни один из электронов, даже обладающий при вылете из катода максимальной скоростью, не может достигнуть анода, т.е. фототок становится равным нулю, называется задерживающим напряжением U o .

Значение задерживающего напряжения связано с начальной максимальной кинетической энергией электронов соотношением

С учетом этого, что уравнение Эйнштейна можно записать в также в виде

hν = А вых + eU 0 .

Если менять величину падающего на катод потока излучения при одном и том же спектральном составе, вольтамперные характеристики будут иметь вид, приведенный на Рис. 2.

Если при неизменной величине потока излучения менять его спектральный состав, т.е. частоту излучения, то вольтамперные характеристики будут меняться, как показано на Рис.3.

U 0 0 U U 03 U 02 U 01 0 U

F 3 > F 2 > F 1 n = const n 3 > n 2 > n 1 F = const

Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света и не зависит от интенсивности света.

hν = А вых + Е к(max)

Энергия падающего фотона расходуется на преодоление работы выхода электрона из вещества и сообщение электронам кинетической энергии

Работа выхода электронов из металла равна минимальной энергии, которой должен обладать электрон для освобождения с поверхности вещества.

Существует внешний и внутренний фотоэффект .

1. Фотоэффект невозможен, если энергии падающего фотона недостаточно для преодоления работы выхода, hν < А вых

2. Если hν min = А вых - порог фотоэффекта.

Частота и длина волны красной границы фотоэффекта:

ν min =А вых /hλ max =hc/A вых

КВАНТОВАЯ ФИЗИКА
Кванты Согласно Планку, любое излучение (в том числе и свет) со-стоит из отдельных квантов. Вследствие этого энергия излучения всегда равна энергии целого числа квантов. Однако энергия oтдельного кванта зависит от частоты.
Энергия кванта, или квант энергии — частота излучения, Дж·с —постоянная Планка
Кванты излучения, частоты (или длины волн), которых соответствуют области видимого света, называются световыми квантами.
Связь между энергией и массой — масса, отвечающая энергии W, м/с — скорость света в вакууме
Фотон Квантование энергии означает, что излучение представляет собой поток частиц. Эти частицы называются фотонами,однако они не являются частицами в смысле классической физики.
Масса фотона Дж·с— постоянная Планка, — частота излучения, — длина волны излучения, с — скорость света в вакууме
Фотоны всегда движутся со скоростью света; они не существуют в состоянии покоя, их масса покоя равна нулю
Импульс фотона
Фотоэффект Испускание электронов веществом под действием света электромагнитного излучения.
Законы фотоэффекта
I. При фиксированной частоте падающего света число фотоэлектронов, вырываемых из катода за единицу времени, пропорционально интенсивности света (закон Столетова).
II. Максимальная начальная скорость (максимальная кинетическая энергия) фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой
III. Для каждого вещества существует красная граница фотоэффекта, т.е. минимальная частотасвета (зависит от химической природы вещества и состояния его поверхности), ниже которой фотоэффект невозможен.
Четырех учеников попросили нарисовать общий вид графика зависимости максимальной кинетической энергии электронов, вылетевших из пластины в результате фотоэф-фекта, от интенсивности / падающего света. Какой рисунок выполнен правильно? Максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего света. Следовательно, правильно выполнен рисунок 4).
Схема для исследования фотоэффекта
Вольт-амперная характеристика фотоэффекта Зависимость фототока I , образуемого потоком электронов, испускаемых под действием света, от напряжения U между электродами. — фототок насыще-ния.Определяется таким значением U, при кото-ром все электроны, испускаемые катодом, достигают анода.
— задерживающее напряжение. При ни один из электронов, даже обладающий при вылете из катода максимальной скоростью, не может преодолеть задерживающего поля и достигнуть анода.
Величина Uз не зависит от интенсивности падающего светового потока. Тщательные измерения показали, что запирающий потенциал линейно возрастает с увеличением частоты ν света. Зависимость запирающего потенциала Uз от частоты ν падающего света
Фотоэлемент освеща-ют светом с определенными частотой и интенсивностью. На рисунке представ-лен график зависимости силы фототока в этом фотоэлементе от приложенного к нему на-пряжения. В случае увеличе-ния частоты без изменения ин-тенсивности падающего света график изменится. На каком из приведенных рисунков правильно показано изменение графика? При неизменной интенсивности величина фототока не зависит от частоты. При изменении частоты изменяется запирающее напряжение. Этим условиям соответствует рисунок 1).
Уравнение Эйнштейна для фотоэффекта А - работа выхода электронов Энергия падающего фо-тона расходуется на энер-гию выхода электрона из металла и на сообщение вылетающему электрону максимальной кинети-ческой энергии.
Это уравнение выведено на основе квантовой тео-рии фотоэффекта,соглас-но которой свет частотой v не только испускается,но и распространяетсяв пространстве и поглоща-етсявеществом отдельны-ми порциями (квантами), энергия которых
Слой оксида кальция облу-чается светом и испускает электро-ны. На рисунке показан график изменения максимальной кине-тической энергии фотоэлектро-нов в зависимости от частоты па-дающего света. Чему равна работа выхода фотоэлектронов из оксида кальция? По графику находим: При ν = 1·10 15 Гц E k = 3·10 -19 Дж Из уравнения Эйнштейна A = h ν - E k A = 6,6·10 - 34 ·1·10 15 - 3·10 -19 = 3,6·10 -19 Дж = = 3,6·10 -19 /1,6·10 -19 = 2,25 эВ
На графике приведена зависимость фототока от прило-женного обратного напряжения при освещении металлической пластины (фотокатода) излу-чением с энергией 4 эВ. Чему равна работа выхода для этого металла? Фототок прекращается при U з = 1,5 В. Следовательно, максимальная кинетическая энергия фотоэлектрона E k = 1,6·10 -19 Кл·1,5 В/1,6·10 -19 Дж = = 1,5 эВ. Работа выхода электрона с поверхности пластины A = h ν - E k = 4 - 1,5 = 2,5 эВ
Красная граница фотоэффекта
— максимальная длина волны падающего света (— соответственно минимальная частота), при которой фотоэффект еще возможен.
Работа выхода выражается в электронвольтах 1эВ = 1,6·10 -19 Дж

Какой график соответствует зависимости максимальной кинетической энергии фотоэлек-тронов Е от частоты падающих на вещество фотонов при фотоэффекте (см. рисунок)? Фотоэлектроны приобретают максимальную кинетическую энергию в том случае, когда частота падающих фотонов превосходит красную границу фотоэффекта. На графике красной границе соответствует точка А. Следовательно, условиям задачи соответствует график 3.
Давление, производимое светом при нормальном падении на поверхность — коэффициент отражения; — энергия всех фотонов, падающих на единицу поверх-ности в единицу времени.
Объяснение давления света
на основе квантовой теории Давление света на по-верхность обусловлено тем, что каждый фотон при соударении с поверх-ностью передает ей свой импульс.
на основе волновой теории Давление света на по-верхность обусловлено действием силы Лоренца на электроны вещества, колеблющиеся под дейст-вием электрического поля электромагнитной волны.