Почему проводники хорошо проводят электрический ток. Классификация материалов по отношению к способности проводить электрический ток

Cтраница 1


Проводник электричества - это твердое тело, в котором есть много свободных электронов. Электроны могут двигаться в веществе свободно, но не могут покидать поверхности. В металле бывает так много свободных электронов, что всякое электрическое поле приводит многие из них в движение. И либо возникший таким образом ток электронов должен непрерывно поддерживать свое существование за счет внешних источников энергии, либо движение электронов прекращается, как только они разрядят источники, вызвавшие поле вначале. В условиях электростатики мы не рассматриваем непрерывных источников тока (о них мы будем говорить в магнитостатике), так что электроны движутся только до тех пор, пока не расположатся так, что повсюду внутри проводника создастся нулевое электрическое поле. Как правило, это происходит в малые доли секунды. Если бы осталось внутри хоть какое-нибудь поле, оно бы вынудило двигаться еще какие-то электроны; возможно только такое электростатическое решение, когда поле всюду внутри равно нулю.  


Проводник электричества характеризуется тем, что его электроны очень подвижны.  


Проводники электричества бывают двух родов - соответственно характеру движения - по ним электрического тока.  

Проводники электричества - тела, в которых могут быть созданы электрические токи проводимости.  

Проводники электричества - тола, п которых могут возникать электрические токи. Электрические токи могут возникать в том случае, когда в телах существуют или образуются носители электрических зарядов. Такое упорядоченное движение электрических зарядов и представляет собой электрический ток. В электролитах носителями зарядов являются ионы - части молекул растворенного вещества.  

Проводники электричества - тела, в которых могут быть созданы электрические токи.  

Пусть проводник электричества, заключенный в трубку (см. рис. VIII.  


Поскольку проводником электричества является вода, заключенная в порах породы, для интерпретации кривых электрического каротажа необходимо знать факторы, влияющие на сопротивление воды. Чистая от примесей вода не проводит электрический ток. Растворенные в воде соли образуют заряженные ионы, которые переносят электроны или электрические заряды. Проводимость раствора определяется концентрацией и мобильностью ионов. Мобильность ионов в растворе зависит от двух факторов - природы ионов и температуры. Ион каждого химического соединения обладает своей подвижностью. Однако определение проводимости раствора на основании химического анализа и использования данных о мобильности отдельных ионов является непрактичным.  

У всех проводников электричества наблюдаются флуктуации электрического напряжения (тока), или шумы. В полупроводниковых диодах следует различать четыре основные составляющие внутреннего шума: тепловой шум, дробовой шум, 1 / / - шум, шум в области пробоя р-п перехода на обратной ветви вольтамперной характеристики.  

Проводниками электрического тока могут быть совсем разные вещества. Например, и кусок металлической проволоки, и морская вода являются электропроводниками. Но электроток в них различен по своей природе. Поэтому они разделены на две группы:

  • первого рода с проводимостью, основанной на электронах;
  • второго рода с проводимостью, основанной на ионах.

Электропроводники первого рода это все металлы и углерод. Представителями второго рода являются кислоты, щёлочи, растворы и расплавы солей, которые называют «электролитами».

  • Ток в проводниках течёт при любых значениях напряжения и прямо пропорционален величине напряжения.

Наилучшими электропроводниками при обычных условиях являются серебро, золото, медь и алюминий. Медь и алюминий наиболее широко используются для изготовления различных проводов и кабелей из-за более низкой цены. Хорошим жидким проводником первого рода является ртуть. Хорошо проводит электрический ток и углерод. Но из-за отсутствия гибкости его применение невозможно. Однако созданная относительно недавно форма углерода графен позволяет изготавливать нити и шнуры из нитей.

Но графеновые шнуры имеют сопротивление, которое для токопроводов является недопустимо большим. Поэтому их используют в электронагревателях. В этом качестве графеновый шнур превосходит металлические проволочные аналоги на основе сплава никеля и хрома, поскольку может обеспечить более высокую температуру. Аналогичным образом используются проволочные электропроводники из вольфрама. Из них изготовлены спирали ламп накаливания и электроды газоразрядных ламп. Вольфрам является самым тугоплавким электропроводником.

Процессы в проводниках

Электрический ток, протекающий в проводнике, оказывает на него определённые воздействия. В любом случае происходит увеличение температуры. Но возможны также и химические реакции, которые приводят к изменению физических и химических свойств. Наибольшим изменениям подвержены электропроводники второго рода. Электрический ток в них вызывает электрохимическую реакцию, называемую электролизом.

В результате ионы проводника второго рода получают вблизи электрических полюсов необходимые заряды и восстанавливаются до состояния, которое было до появления кислоты, щёлочи или соли. Электролиз широко используется для получения многих чистых химических веществ из природного сырья. Способом электролиза расплавов получают чистый алюминий и некоторые другие металлы.

Проводники первого и второго рода могут не только проводить электрический ток при подаче на них внешнего напряжения. При взаимодействии, например свинца с кислотой, то есть проводника первого рода с проводником второго рода, возникает электрохимическая реакция, обеспечивающая выделение электрической энергии. На этом основано устройство аккумуляторов .

Электропроводники первого рода также могут изменяться при контакте друг с другом. Например, контакт медного и алюминиевого проводника является плохим решением без специального покрытия его. Влажности воздуха оказывается достаточно для разрушения в месте контакта электрохимической реакцией. Поэтому рекомендуется защищать подобные соединения лаком или аналогичными веществами.

У некоторых проводников первого рода при значительном охлаждении возникает особое состояние, пребывая в котором они не оказывают электрическому току сопротивление. Это явление называется сверхпроводимостью. Классическая сверхпроводимость соответствует значению температуры, близкой к состоянию жидкого гелия. Однако по мере выполнения исследований обнаружились новые сверхпроводники с более высокими значениями температуры.

  • Экономически оправданное использование сверхпроводимости является одной из приоритетных целей современной энергетики.

Электрический ток может течь не только в проводниках первого и второго рода. Есть ещё полупроводники и газы, которые так же проводят электроток. Но это уже совсем другая история…

Термин имеет два значения: 1) электропроводящее вещество (например, металл или электролит), 2) деталь, изделие или конструкция, позволяющие передавать электричество.

Первое значение используется в физике и в материаловедении, где все материалы по своей электропроводности делятся на проводники, диэлектрики и полупроводники. В энерготехнике чаще пользуются вторым значением этого термина. Передача электрической энергии по проводникам может происходить - от одного элемента источника, преобразователя или приемника электрической энергии к другому по соединяющим проводникам на расстояние от нескольких нанометров (например, в интегральных схемах) до нескольких метров (например, в мощном силовом оборудовании); - от одного элемента электроустановки к другому или от одной электроустановки к другой по электрическим линиям на расстояние от нескольких метров (например, в пределах одной установки) до нескольких тысяч километров (между крупными энергосистемами).

Совокупность линий и их узлов в электроустановке называется электропроводкой , а совокупность линий и их узлов, связывающая между собой электроустановки, – электрической сетью . По назначению и протяженности в энергосистемах различают системообразующие (основные) и распределительные сети, на предприятиях межцеховые и цеховые сети и др.

Передачу электрического заряда по проводнику (льняной нити) обнаружил в 1663 г. мэр города Магдебурга Отто фон Гюрике (Otto von Guericke, 1602–1686), который перед этим в том же году изготовил первый в мире электростатический генератор. Более подробное исследование электрических явлений началось в 18-м веке, и 2 июля 1729 года английский физик-любитель Стивен Грей (Stephen Gray, 1666–1735) проложил, использовав для проверки передаваемости электричества, конопляную веревку длиной в 80,5 футов на горизонтальных шелковых шнурах (рис. 4.5.1); этим он создал первую в мире электрическую линию. 14 июля он провел публичную демонстрацию линии, длина которой была уже 650 футов, а проводом в которой по-прежнему служила конопляная веревка, проложенная по шелковым шнурам, натянутым между опорами (первая воздушная линия). Опыт, несмотря на очень плохую проводимость провода, удивительным образом удался; веревка, очевидно, была (благодаря английскому климату) достаточно влажной. Грей впервые ввел также классификацию веществ на проводящие и непроводящие. Спустя 10 лет (в 1739 году) другой английский физик Жан Теофил Дезагюлье (Jean Theophile Desaguliers, 1683–1744) ввел понятие проводник (англ. conductor). Первую воздушную линию с металлическими (железными) проводами построил в 1744 году в Эрфурте (Erfurt, Германия) немецкий профессор философии Андреас Гордон (Andreas Gordon, 1712–1751), а первую опытную кабельную (телеграфную) линию проложил в 1841 году в Санкт-Петербурге Борис Семенович Якоби (Moritz Hermann Jacobi).

Рис. 1. Принцип устройства первой электрической линии Стивена Грея. 1 конопляная веревка (провод), 2 шелковые шнуры (изоляторы)

В технике электропередачи находят применение как гибкие, так и жесткие проводники. К первым относятся различные провода и кабели , ко вторым шины . Провода и шины могут быть изолированными или неизолированными (голыми). Изолированные провода и кабели могут содержать от одной до нескольких токоведущих жил , изолированных друг от друга.

Отличительным признаком кабеля является герметичная оболочка, изготовленная из полимерных материалов (например, из поливинилхлорида) или из металла (в настоящее время чаще всего из алюминия, раньше главным образом из свинца), защищающая жилы от вредных воздействий окружающей среды. Упрощенная классификация проводников по их гибкости, изоляции и области применения приведена на рис. 2.

Рис. 2. Классификация проводников (упрощенно)

Металлическая часть жил, в зависимости от сечения и требуемой гибкости, может быть массивной или состоять из проволок; диаметр проволок может при этом составлять от десятых долей миллиметра (в тонкопроволочных жилах) до нескольких миллиметров. От проводников требуется

Высокая электропроводность,
- хорошие контактные свойства,
- высокая электрическая прочность изоляции,
- достаточная механическая прочность,
- достаточная гибкость (в случае проводов и кабелей),
- долгосрочная химическая стабильность,
- достаточная стойкость при нагреве,
- достаточная теплоемкость,
- защищенность от внешних воздействий,
- безвредность для окружающей среды,
- простота использования в электромонтажных работах,
- умеренная стоимость.

Из электропроводных материалов этим требованиям лучше всех соответствуют
- чистая (без каких-либо примесей) медь,
- чистый алюминий (по соображениям надежности начиная с сечения 16 mm2),
- в проводах воздушных линий
- комбинации алюминия и стали.
Из изоляционных материалов наиболее часто используют
- полиэтилен n ,
- поливинилхлорид n , который лучше других материалов сопротивляется воспламенению, но который содержит ядовитый и опасный для окружающей среды хлор, - синтетические (в том числе особо нагревостойкие кремнийорганические) каучуки.

Проводники (и жилы многожильных проводников) делятся по их назначению
- на рабочие проводники (к которым в случае переменного тока относятся фазные и нейтральные проводники; в некоторых сетях или установках нейтральные проводники могут отсутствовать);
- на защитные проводники , необходимые для обеспечения безопасности людей;
- на вспомогательные проводники (например, для управления, связи или сигнализации). Рабочие проводники могут быть все изолированы от земли, но часто один из них (обычно нейтральный) заземлен. Таким рабочим заземлением достигается более низкое и равномерно распределенное напряжение фазных проводников относительно земли, что, например, в сетях высокого напряжения позволяет снизить стоимость изоляции.

Защитные проводники предусмотрены для надежного заземления тех частей электроустановок, которые при нарушении изоляции могут оказаться под напряжением (открытых проводящих частей). Такое защитное заземление должно исключить возникновение опасного напряжения между этими частями и землей и тем самым исключить возможность поражения людей электрическим током. В электрических сетях низкого напряжения ранее практиковалось совмещение защитного и нейтрального проводников; в настоящее время эти проводники, по соображениям надежности и безопасности, друг от друга отделены.

Проводники проводники́

вещества, хорошо проводящие электрический ток, то есть обладающие высокой электропроводностью (>10 4 -10 6 Ом -1 ·см -1), благодаря наличию в них большого количества подвижных заряженных частиц. Делятся на электронные (металлы), ионные (электролиты) и смешанные, где имеет место движение как электронов, так и ионов (например, плазма).

ПРОВОДНИКИ

ПРОВОДНИКИ́, вещества, хорошо проводящие электрический ток благодаря наличию в них большого количества подвижных заряженных частиц. К хорошим проводникам обычно относят вещества с удельным сопротивлением 10 -6 ом. см.
Проводниками электрического тока (проводниковыми материалами) могут быть твердые тела, жидкости, а при соответствующих условиях и газы.
Твердыми проводниками являются металлы (см. МЕТАЛЛЫ) , металлические сплавы (см. СПЛАВЫ) , некоторые модификации углерода, а также твердые электролиты (см. ТВЕРДЫЕ ЭЛЕКТРОЛИТЫ) .
К жидким проводникам относятся жидкие металлы (см. ЖИДКИЕ МЕТАЛЛЫ) и различные электролиты (см. ЭЛЕКТРОЛИТЫ) .
Механизм прохождения тока в металлах в твердом и жидком состоянии обусловлен направленным движением свободных электронов, поэтому их называют проводниками с электронной электропроводностью или проводниками 1 рода. При низких температурах многие металлы и сплавы переходят в сверхпроводящее состояние (см. Сверхпроводники (см. СВЕРХПРОВОДНИКИ) ). Проводимость в твердых электролитах обеспечивается переносом заряда одним типом ионов.
Механизм прохождения тока в жидких электролитах, или проводниках 2 рода, связан с переносом вместе с электрическими зарядами ионов. Проводниками 2 рода являются растворы (в основном водные) кислот, щелочей и солей, а также расплавы ионных соединений. В результате прохождения тока через такие проводники состав электролита постепенно меняется, а на электродах выделяются продукты электролиза.
Все газы и пары при низких напряженностях электрического поля не являются проводниками. Однако, если напряженность поля выше некоторого критического значения, то газ может стать проводником, обладающим электронной и ионной электропроводностями. В ионизированных газах и парах веществ, в том числе в парах металлов, прохождение электрического тока будет обусловлено движением как электронов, так и ионов, и механизм проводимости будет смешанным. Сильно ионизированный газ, в котором концентрации положительных и отрицательных зарядов равны, называется плазмой (см. ПЛАЗМА) .


Энциклопедический словарь . 2009 .

Смотреть что такое "проводники" в других словарях:

    ПРОВОДНИКИ - класс веществ, обладающих способностью хорошо проводить электрический ток, т. е. имеющих высокую электропроводность. К П. относятся (см.), (см.) и (см.). Природа проводимости бывает различной, а деление на П. и непроводники условно, т.к.… … Большая политехническая энциклопедия

    Тонкие тросы, служащие для передачи с помощью их более толстых тросов одного судна на другое, на стенку, пристань и т. д. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 ПРОВОДНИКИ… … Морской словарь

    Вещества, хорошо проводящие электрический ток благодаря наличию в них большого количества подвижных заряженных частиц. Делятся на электронные (металлы, полупроводники), ионные (электролиты) и смешанные, где имеет место движение как электронов,… … Большой Энциклопедический словарь

    Вещества, хорошо проводящие электрич. ток, т. е. обладающие высокой электропроводностью s (низким уд. сопротивлением r=1/s). К хорошим П. обычно относят в ва с r … Физическая энциклопедия

    Электрический провод Проводник вещество, проводящее электрический ток. Среди наиболее распространённых твёрдых проводников известны металлы, полуметаллы. Пример проводящих жидкостей электролиты. Пример проводящих газов ионизированный газ… … Википедия

    Электрические, вещества, хорошо проводящие электрический ток, т. е. обладающие высокой электропроводностью (низким удельным сопротивлением ρ). К хорошим П. обычно относят вещества с ρ ≤ 10 6 ом․см. В противоположность П. изоляторы… … Большая советская энциклопедия

    Электрические тела (вещества), обладающие способностью хорошо проводить электрич. ток. П. содержат большое число носителей тока. В П. 1 го рода (металлах и сплавах) носителями тока являются электроны, в П. 2 го рода (электролитах) ионы … Большой энциклопедический политехнический словарь

    В ва, хорошо проводящие электрич. ток, т. е. обладающие высокой электропроводностью (> 104 106 Ом 1 см 1), благодаря наличию в них большого кол ва подвижных заряж. частиц. Делятся на электронные (металлы), ионные (электролиты) и смешанные, где… … Естествознание. Энциклопедический словарь

    ПРОВОДНИКИ - CONDUITSДва агентства с федеральной поддержкой и несколько частных компаний, занимающихся покупкой ипотек у кредитных учреждений, предоставляющих ипотечные ссуды. Эти агентства и компании часто объединяют ипотеки в пулы и продают их инвесторам,… … Энциклопедия банковского дела и финансов

    проводники внешних цепей - (В щитке) должны предусматриваться места для размещения проводников внешних цепей и удобного их присоединения к аппаратам и зажимам. [ГОСТ Р 51778 2001] Тематики НКУ (шкафы, пульты, ...)электропроводка, электромонтаж … Справочник технического переводчика

Книги

  • Чудеса архангела Михаила. Посланники небес. Духи-проводники. Что шепчет ангел (комплект из 4 книг) , . …
  • Оракул фей. Новая духовность. Наши проводники (+ 40 карт) (количество томов: 2) , Кассиди Паулина. Оракул фей. Послания, которые несут нам духи природы (40 карт) Замечали ли вы когда-нибудь очертания лиц в узорах древесной коры? Слышали ли смех в журчании ручья? Находясь одни в лесу,…

При изучении тепловых явлений говорилось, что по способности проводить теплоту вещества делятся на хорошие и плохие проводники тепла.

По способности передавать электрические заряды вещества также делятся на несколько классов: проводники, полупроводники и непроводники электричества.

    Проводниками называют тела, через которые электрические заряды могут переходить от заряженного тела к незаряженному.

Хорошие проводники электричества - это металлы, почва, вода с растворёнными в ней солями, кислотами или щелочами, графит. Тело человека также проводит электричество. Это можно обнаружить на опыте. Дотронемся до заряженного электроскопа рукой. Листочки тотчас опустятся. Заряд с электроскопа уходит по нашему телу через пол комнаты в землю.

а - железо; б - графит

Из металлов лучшие проводники электричества - серебро, медь, алюминий.

    Непроводниками называют такие тела, через которые электрические заряды не могут переходить от заряженного тела к незаряженному.

Непроводниками электричества, или диэлектриками , являются эбонит, янтарь, фарфор, резина, различные пластмассы, шёлк, капрон, масла, воздух (газы). Изготовленные из диэлектриков тела называют изоляторами (от итал. изоляро - уединять).

а - янтарь; б - фарфор

    Полупроводниками называют тела, которые по способности передавать электрические заряды занимают промежуточное положение между проводниками и диэлектриками.

В природе полупроводники распространены достаточно широко. Это оксиды и сульфиды металлов, некоторые органические вещества и др. Наибольшее применение в технике нашли германий и кремний.

Полупроводники при низкой температуре не проводят электрический ток и являются диэлектриками. Однако при повышении температуры в полупроводнике начинает резко увеличиваться число носителей электрического заряда, и он становится проводником.

Почему это происходит? У полупроводников, таких как кремний и германий, в узлах кристаллической решётки атомы колеблются около своих положений равновесия, и уже при температуре 20 °С это движение становится настолько интенсивным, что химические связи между соседними атомами могут разорваться. При дальнейшем повышении температуры валентные электроны (электроны, находящиеся на внешней оболочке атома) атомов полупроводников становятся свободными, и под действием электрического поля в полупроводнике возникает электрический ток.

Характерной особенностью полупроводников является возрастание их проводимости с повышением температуры. У металлов же при повышении температуры проводимость уменьшается.

Способность полупроводников проводить электрический ток возникает также при воздействии на них света, потока быстрых частиц, введении примесей и др.

а - германий; б- кремний

Изменение электропроводности полупроводников под действием температуры позволило применять их в качестве термометров для замера температуры окружающей среды, широко применяют в технике. С его помощью контролируют и поддерживают температуру на определённом уровне.

Повышение электропроводности вещества под воздействием света носит название фотопроводимость . Основанные на этом явлении приборы называют фотосопротивлениями . Фотосопротивления применяются для сигнализации и в управлении производственными процессами на расстоянии, сортировке изделий. С их помощью в экстренных ситуациях автоматически останавливаются станки и конвейеры, предупреждая несчастные случаи.

Благодаря удивительным свойствам полупроводников, они широко используются при создании транзисторов, тиристоров, полупроводниковых диодов, фоторезисторов и другой сложнейшей аппаратуры. Применение интегральных микросхем в теле-, радио- и компьютерных приборах позволяет создавать устройства небольших, а порой и ничтожно малых размеров.

Вопросы

  1. На какие группы делят вещества по способности передавать электрические заряды?
  2. Какой характерной особенностью обладают полупроводники?
  3. Перечислите области применения полупроводниковых приборов.

Упражнение 22

  1. Почему заряженный электроскоп разряжается, если его шарика коснуться рукой?
  2. Почему стержень электроскопа изготавливают из металла?
  3. К шарику незаряженного электроскопа подносят тело, заряженное положительно, не касаясь его. Какой заряд возникнет на листочках электроскопа?

Это любопытно...

Способность тела к электризации определяется наличием свободных зарядов. В полупроводниках концентрация носителей свободного заряда увеличивается с ростом температуры.

Проводимость, которая осуществляется свободными электронами (рис. 43), называется электронной проводимостью полупроводника или проводимостью n-типа (от лат. negativus - отрицательный). При отрыве электронов от атомов германия в местах разрыва образуются свободные места, которые не заняты электронами. Эти вакансии получили название «дырки». В области образования дырки возникает избыточный положительный заряд. Вакантное место может быть занято другим электроном.

Электрон, перемещаясь в полупроводнике, создаёт возможность заполнения одних дырок и образования других. Возникновение новой дырки сопровождается появлением свободного электрона, т. е. идёт непрерывное образование пар электрон - дырка. В свою очередь, заполнение дырок приводит к уменьшению числа свободных электронов. Если кристалл поместить в электрическое поле, то будет происходить перемещение не только электронов, но и дырок. Направление перемещения дырок противоположно направлению движения электронов.

Проводимость, которая возникает в результате перемещения дырок в полупроводнике, называется дырочной проводимостью или проводимостью р-типа (от лат. positivus - положительный). Полупроводники подразделяют на чистые полупроводники, примесные полупроводники n-типа, примесные полупроводники р-типа.

Чистые полупроводники обладают собственной проводимостью. В создании тока участвуют свободные заряды двух типов: отрицательные (электроны) и положительные (дырки). В чистом полупроводнике концентрация свободных электронов и дырок одинакова.

При введении в полупроводник примесей возникает примесная проводимость. Изменяя концентрацию примеси, можно менять и число носителей заряда того или иного знака, т. е. создавать полупроводники с преимущественной концентрацией отрицательного или положительного заряда. Примесные полупроводники n-типа обладают электронной проводимостью. Основными носителями заряда являются электроны, а неосновными - дырки.

Примесные полупроводники р-типа обладают дырочной проводимостью. Основными носителями заряда являются дырки, а неосновными - электроны.

Представляет собой соединение полупроводников р- и л-типа. Сопротивление области контакта зависит от направления тока. Если диод включить в цепь, чтобы область кристалла с электронной проводимостью n-типа была подсоединена к положительному полюсу, а область с дырочной проводимостью р-типа к отрицательному полюсу, то тока в цепи не будет, так как переход электронов из n-области в р-область затрудняется.

Если р-область полупроводника подключить к положительному полюсу, а n-область к отрицательному, то в этом случае ток проходит через диод. За счёт диффузии основных носителей тока в чужой полупроводник в области контакта образуется двойной электрический слой, препятствующий движению зарядов. Внешнее поле, направленное от р к n, частично компенсирует действие этого слоя, и при увеличении напряжения ток быстро возрастает.