Силы в природе основные формулы и законы. Силы в природе

В природе существует четыре типа сил: гравитационные, электромагнитные, ядерные и слабые.

Гравитационные силы, или силы тяготения, действуют между всеми телами. Но эти силы заметны, если хотя бы одно из тел имеет размеры, соизмеримые с размерами планет. Силы притяжения между обычными телами настолько малы, что ими можно пренебречь. Поэтому гравитационными можно считать силы взаимодействия между планетами, а также между планетами и Солнцем или другими телами, имеющими очень большую массу. Это могут быть звёзды, спутники планет и т.п.

Электромагнитные силы действуют между телами, имеющими электрический заряд.

Ядерные силы (сильные) являются самыми мощными в природе. Они действуют внутри ядер атомов на расстояниях 10 -13 см.

Слабые силы , как и ядерные, действуют на малых расстояниях порядка 10 -15 см. В результате их действия происходят процессы внутри ядра.

Механика рассматривает гравитационные силы, силы упругости и силы трения.

Гравитационные силы

Гравитация описывается законом всемирного тяготения. Этот закон был изложен Ньютоном в середине XVII в. в работе «Математические начала натуральной философии».

Гравитацией называют силу тяготения, с которой любые материальные частицы притягиваются друг у другу.

Сила, с которой материальные частицы притягиваются друг к другу, прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними .

G – гравитационная постоянная, численно равная модулю силы тяготения, с которой тело, имеющее единичную массу, действует на тело, имеющее такую же единичную массу и находящееся на единичном расстоянии от него.

G = 6,67384(80)·10 −11 м 3 ·с −2 ·кг −1 , или Н·м²·кг −2 .

На поверхности Земли сила гравитации (сила тяготения) проявляется в виде силы тяжести .

Мы видим, что любой предмет, брошенный в горизонтальном направлении, всё равно падает вниз. Падает вниз также и любой предмет, подброшенный вверх. Происходит это под действием силы тяжести, которая действует на любое материальное тело, находящееся вблизи поверхности Земли. Сила тяжести действует на тела и на поверхности других астрономических тел. Эта сила всегда направлена вертикально вниз.

Под действием силы тяжести тело движется к поверхности планеты с ускорением, которое называется ускорением свободного падения .

Ускорение свободного падения на поверхности Земли обозначается буквой g .

F t = mg ,

следовательно,

g = F t / m

g = 9, 81 м/с 2 на полюсах Земли, а на экваторе g = 9,78 м/с 2 .

При решении простых физических задач величину g принято считать равной 9,8 м/с 2 .

Классическая теория тяготения применима только для тел, имеющих скорость намного ниже скорости света.

Силы упругости

Силами упругости называются силы, которые возникают в теле в результате деформации, вызывающей изменение его формы или объёма. Эти силы всегда стремятся вернуть тело в его первоначальное положение.

При деформации происходит смещение частиц тела. Сила упругости направлена в сторону, противоположную направлению смещения частиц. Если деформация прекращается, сила упругости исчезает.

Английский физик Роберт Гук, современник Ньютона, открыл закон, устанавливающий связь между силой упругости и деформацией тела.

При деформации тела возникает сила упругости, прямо пропорциональная удлинению тела, и имеющая направление, противоположное перемещению частиц при деформации.

F = k l ,

где к – жёсткость тела, или коэффициент упругости;

l – величина деформации, показывающая величину удлинения тела под воздействием сил упругости.

Закон Гука действует для упругих деформаций, когда удлинение тела мало, а тело восстанавливает свои первоначальные размеры после того, как исчезают силы, вызвавшие эту деформацию.

Если деформация велика, и тело не возвращается в свою исходную форму, закон Гука не применяется. При очень больших деформациях происходит разрушение тела.

Силы трения

Сила трения возникает, когда одно тело движется по поверхности другого. Она имеет электромагнитную природу. Это следствие взаимодействия между атомами и молекулами соприкасающихся тел. Направление силы трения противоположно направлению движения.

Различают сухое и жидкое трение. Сухим называют трение, если между телами нет жидкой или газообразной прослойки.

Отличительная особенность сухого трения – трение покоя, которое возникает при относительном покое тел.

Величина силы трения покоя всегда равна величине внешней силы и направлена в противоположную сторону. Сила трения покоя препятствует движению тела.

В свою очередь, сухое трение разделяется на трение скольжения и трение качения .

Если величина внешней силы превышает величину силы трения, то в этом случае появится проскальзывание, и одно из контактирующих тел начнёт поступательно перемещаться относительно другого тела. А сила трения будет называться силой трения скольжения . Её направление будет противоположно направлению скольжения.

Сила трения скольжения зависит от силы, с которой тела давят друг на друга, от состояния трущихся поверхностей, от скорости движения, но не зависит от площади соприкосновения.

Сила трения скольжения одного тела по поверхности другого вычисляется по формуле:

F тр. = k · N ,

где k – коэффициент трения скольжения;

N – сила нормальной реакции, действующая на тело со стороны поверхности.

Сила трения качения возникает между телом, которое перекатывается по поверхности, и самой поверхностью. Такие силы появляются, например, при соприкосновении шин автомобиля с дорожным покрытием.

Величина силы трения качения вычисляется по формуле

где F t – сила трения качения;

f – коэффициент трения качения;

R – радиус катящегося тела;

N – прижимающая сила.

1. Силы в природе:

а) упругость;

б) трение;

в) сила тяжести;

2. Закон всемирного тяготения;

3. Невесомость

1. В окружающем нас мире бесчисленное количество тел, которые взаимодействуют друг с другом. Но, несмотря на многообразие сил, принято выделять несколько их видов.

Силой упругости называют силу, которая возникает в теле при изменении его формы или размеров. Это происходит, если тело сжимают, растягивают, изгибают или скручивают. Например, сила упругости, возникшая в пружине, действует на кирпич. Она возникла в результате сжатия пружины.

Сила упругости всегда направлена противоположно той силе, которая вызвала изменение формы или размеров тела. В нашем примере упавший кирпич сжал пружину, то есть подействовал на нее с силой, направленной вниз. В результате в пружине возникла сила упругости, направленная в противоположную сторону, то есть вверх.

Силой тяготения называют силу, с которой все тела в мире притягиваются друг к другу. Разновидностью силы тяготения является сила тяжести – сила, с которой тело, находящееся вблизи какой-либо планеты, притягивается к ней. Например, ракета, стоящая на Марсе, притягивается к нему – на ракету действует сила тяжести.

Сила тяжести всегда направлена к центру планеты. Например, Земля притягивает мальчика и мяч с силами, направленными вниз, то есть к центру планеты.

Силой трения называют силу, препятствующую проскальзыванию одного тела по поверхности другого. Резкое торможение автомобиля сопровождается «визгом тормозов». Он возникает из-за проскальзывания шин по поверхности асфальта. При этом между колесом и дорогой действует сила трения, препятствующая такому проскальзыванию.

Сила трения всегда направлена противоположно направлению проскальзывания рассматриваемого тела по поверхности другого. Например, при торможении автомобиля его колеса проскальзывают вперед, значит, действующая на них сила трения о дорогу направлена в противоположную сторону, то есть назад.

Выталкивающей силой (или силой Архимеда) называют силу, с которой жидкость или газ действуют на погруженное в них тело. Вода в пруду действует на пузырьки воздуха – выталкивает их на поверхность. Вода также действует на рыбу и камни – подталкивает их вверх, уменьшая их вес (силу, с которой камни давят на дно пруда). Архимедова сила обычно направлена вверх, противоположно силе тяжести.

2. Ньютоновский закон всемирного тяготения для силы, действующей между двумя телами с массами m 1 и m 2 , записывается следующим образом:

F=G ,

Где r – расстояние между телами, G= 6,67 Н - гравитационная постоянная (1 Н = 1 ньютон – это величина силы, с которой Земля притягивает тело массой 0,1 кг, находящееся на её поверхности).

Сила гравитационного притяжения между телами, размеры которых значительно меньше расстояния между ними, прямо пропорционально их массам, обратно пропорционально квадрату расстояния между ними и направлено вдоль соединяющей их прямой.

Гравитационная постоянная является мировой константой, её определение возможно при проведении прямых лабораторных опытов по измерению силы гравитационного притяжения двух известных масс. Впервые опыт по определению G был поставлен Г. Кавендишем в 1797 г. зная величину G, можно определить массу Земли, массы других планет Солнечной системы, массу Солнца. Для определения массы Солнца необходимо знать расстояние от Земли до Солнца и время, за которое Земля совершает один оборот вокруг Солнца.

Закон всемирного тяготения позволил Ньютону дать количественное объяснение движению планет вокруг Солнца и Луны вокруг Земли, понять природу морских приливов.

Еще до того как Ньютон постулировал закон всемирного тяготения, И. Кеплер, анализируя движения планет Солнечной системы, предложил три простых закона, очень точно описывающих эти движения не только для всех планет, но и для их спутников.

Лекция № 4

Тема: 1.1.3. Импульс. Закон сохранения импульса и

Реактивное движение

План:

1. Общее понятие. Импульс тела;

2. Закон сохранения импульса;

3. Реактивное движение.

1. Определение: импульсом (количеством движением) тела р называется произведение массы на его скорость.

Мы знаем, что причиной изменения скорости тела является действия других тел. Выясним, какая сила требуется для того, чтобы за время t увеличить скорость тела от 0 до некоторого значения υ . По второму закону Ньютона F=ma , и согласно формуле a=υ/t

Таким образом,

F = mv/t

В правую часть полученного выражения входит произведение массы тела на его скорость. Обозначим это произведение p :

Физическая величина, равная произведению массы тела на его скорость, называется импульсом тела:

р - импульс тела.

Если тело покоится, то его импульс равен нулю. При увеличении скорости импульс возрастает.

Импульс-величина векторная.

Единицей импульса в СИ является килограмм-метр в секунду (1 кг м/с)

Понятие импульса была ведено введено в физику Рене Декартом (1596-1650). Сам Декарт назвал эту величину не импульсом, а количеством движения.

2. Для импульса справедлив фундаментальный закон природы, называемый законом сохранения импульса (или количества движения). Открывший этот закон Декарт в одном из своих писем написал: «Я принимаю, что во Вселенной, во всей созданной материи есть известное количество движения, которое никогда не увеличивается, не уменьшается, и, таким образом, если одно тело приводит в движение другое, то теряет столько своего движения, сколько его сообщает»

В наиболее простом случае закон сохранения импульса может быть сформулирован следующим образом.

Причиной изменения движения: появления ускорения у тел является сила. Силы возникают при взаимодействии тел друг с другом. Но какие существуют виды взаимодействий и много ли их?

На первый взгляд может показаться, что различных видов воздействий тел друг на друга, а следовательно, и различных видов сил существует очень много. Ускорение можно сообщить телу, толкнув или потянув его рукой; с ускорением плывёт корабль, когда дует попутный ветер; с ускорением движется любое тело, падающее на Землю; натянув и отпустив тетиву лука, мы сообщаем ускорение стреле. Во всех рассмотренных случаях действуют силы, и все они кажутся совершенно различными. А можно назвать ещё и другие силы. Все знают о существовании электрических и магнитных сил, о силе прилива и отлива, о силе землетрясений и ураганов.

Но действительно ли в природе существует так много разных сил?

Если мы говорим о механическом движении тел, то здесь мы встречаемся только с тремя видами сил: сила тяготения, сила упругости и сила трения. К ним сводятся, все рассмотренные выше силы. Силы упругости, тяготения и трения являются проявлением сил всемирного тяготения и электромагнитных сил природы. Получается, что в природе из указанных существует только две силы.

Электромагнитные силы. Между наэлектризованными телами действует особая сила, которая называется электрической силой, которая может быть как силой притяжения, так и силой отталкивания. В природе существуют заряды двух видов: положительные и отрицательные. Два тела с различными зарядами притягиваются, а тела с одноимёнными зарядами отталкиваются.

Электрические заряды обладают одним особенным свойством: когда заряды движутся, между ними, кроме электрической силы, возникает и другая – магнитная сила.

Магнитная и электрическая силы тесно связаны друг с другом и действуют одновременно. А так как чаще всего приходится иметь дело с движущимися зарядами, то действующие между ними силы нельзя разграничить. И эти силы называют электромагнитными силами.

Как же возникает «электрический заряд», который может быть у тела, а может и не быть?

Все тела состоят из молекул и атомов. Атомы состоят ещё из более мелких частиц – атомного ядра и электронов. Они, ядра и электроны, обладают определёнными электрическими зарядами. Ядро имеет положительный заряд, а электроны – отрицательный.

В нормальных условиях атом не имеет заряда – он нейтрален, потому что суммарный отрицательный заряд электронов равен положительному заряду ядра. И тела, которые состоят их таких нейтральных атомов, электрически нейтральны. Между такими телами практически нет электрических сил взаимодействия.

Но в одном и том же жидком (или твёрдом) теле соседние атомы настолько близко расположены один к другому, что силы взаимодействия между зарядами, из которых они состоят, весьма значительны.

Силы взаимодействия атомов зависят от расстояний между ними. Силы взаимодействия между атомами способны изменять своё направление при изменении расстояния между ними. Если расстояние между атомами очень мало, то они отталкиваются друг от друга. Но если расстояние между ними увеличить, то атомы начинают притягиваться. При некотором расстоянии между атомами силы их взаимодействия становятся равными нули. Естественно, что на таких расстояниях атомы и располагаются друг относительно друга. Отметим, что расстояния эти очень малы, и приблизительно равны размерам самих атомов.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Силы в природе.

В природе существует много разных видов сил: тяготения, тяжести, Лоренца, Ампера, взаимодействия неподвижных зарядов и т.д., но все они в конечном счете сводятся к небольшому числу фундаментальных (основных) взаимодействий. Современная физика считает, что существует в природе лишь четыре вида сил или четыре вида взаимодействий:

1) гравитационное взаимодействие (осуществляется через гравитационные поля);

2) электромагнитное взаимодействие (осуществляется через электромагнитные поля);

3) ядерное (или сильное) (обеспечивает связь частиц в ядре);

4) слабое (отвечает за процессы распада элементарных частиц).

В рамках классической механики имеют дело с гравитационными и электромагнитными силами, а также с упругими силами и силами трения.

Гравитационные силы (силы тяготения) – это силы притяжения, которые подчиняются закону всемирного тяготения. Любые два тела притягиваются друг к другу с силой, модуль которой прямо пропорционален произведению их масс и обратно пропорционален квадрату расстояния между ними:

где =6,67×10 –11 Н×м 2 /кг 2 – гравитационная постоянная.

Сила тяжести – сила, с которой тело притягивается Землей. Под действием силы притяжения к Земле все тела падают с одинаковым относительно поверхности Земли ускорением , называемым ускорением свободного падения. По второму закону Ньютона, на всякое тело действует сила , называемая силой тяжести. Она приложена к центру тяжести.

Вес с ила, с которой тело, притягиваясь к Земле, действует на подвес или опору. В отличие от силы тяжести, являющейся гравитационной силой, приложенной к телу, вес – это упругая сила, приложенная к опоре или подвесу. Сила тяжести равна весу только в том случае, когда опора или подвес неподвижны относительно Земли. По модулю вес может быть как больше, так и меньше силы тяжести . В случае ускоренного движения опоры (например, лифта, везущего груз) уравнение движения (с учетом того, что сила реакции опоры равна по величине весу, но имеет противоположный знак ): Þ . Если движение происходит вверх , вниз: .

При свободном падении тела его вес равен нулю, т.е. оно находится в состоянии невесомости.

Силы упругости возникают в результате взаимодействия тел, сопровождающегося их деформацией. Упругая (квазиупругая) сила пропорциональна смещению частицы из положения равновесия и направлена к положению равновесия:

Силы трения возникают благодаря существованию сил взаимодействия между молекулами и атомами соприкасающихся тел. Силы терния: а) возникают при соприкосновении двух движущихся тел; б) действуют параллельно поверхности соприкосновения; г) направлены против движения тела.

Трение между поверхностями твердых тел при отсутствии какой-либо прослойки или смазки называется сухим . Трение между твердым телом и жидкой или газообразной средой, а также между слоями такой среды называется вязким или жидким. Различают три вида сухого трения: трение покоя, трение скольжения и трение качения.

Сила трения покоя – это сила, действующая между соприкасающимися телами, находящимися в состоянии покоя. Она равна по величине и противоположно направлена силе, понуждающей тело к движению: ; , где m – коэффициент трения.

Сила трения скольжения возникает при скольжении одного тела по поверхности другого: и направлена по касательной к трущимся поверхностям в сторону, противоположную движению данного тела относительно другого. Коэффициент трения скольжения зависит от материала тел, состояния поверхностей и от относительной скорости движения тел.

При качении тела по поверхности другого возникает сила трения качения , которая препятствует качению тела. Сила трения качения при тех же материалах соприкасаемых тел всегда меньше силы трения скольжения. Этим пользуются на практике, заменяя подшипники скольжения шариковыми или роликовыми подшипниками.

Упругие силы и силы трения определяются характером взаимодействия между молекулами вещества, которое имеет электромагнитное происхождение, следовательно, они по своей природе имеют электромагнитные происхождения. Гравитационные и электромагнитные силы являются фундаментальными – их нельзя свести к другим, более простым силам. Упругие силы и силы трения не являются фундаментальными. Фундаментальные взаимодействия отличаются простотой и точностью законов.

МОУ Дмитриевская СОШ

Урок по физике в 11 классе по теме: "Силы в природе"

Колупаев Владимир Григорьевич

учитель физики

2015

Целью урока является расширение программного материала по теме: “Силы в природе ” и совершенствование практических навыков и умений по решению задач ЕГЭ.

Задачи урока:

    закрепить изученный материал,

    сформировать у учащихся представления о силах вообще и о каждой силе в отдельности,

    грамотно применять формулы и правильно строить чертежи при решении задач.

Урок сопровождается мультимедиа презентацией.

I . Силой называется векторная величина, которая является причиной всякого движения как следствия взаимодействий тел. Взаимодействия бывают контактные, вызывающие деформации, и бесконтактные. Деформация это изменение формы тела или отдельных его частей в результате взаимодействия.

В Международной системе единиц (СИ) единица силы называется ньютон (Н). 1 Н равен силе, придающей эталонному телу массой 1 кг ускорение 1 м/с 2 в направлении действия силы. Прибор для измерения силы – динамометр.

Действие силы на тело зависит от:

    Величины прилагаемой силы;

    Точки приложения силы;

    Направления действия силы.

По своей природе силы бывают гравитационные, электромагнитные, слабые и сильные взаимодействия на полевом уровне. К гравитационным силам относятся сила тяжести, вес тела, сила тяготения. К электромагнитным силам относятся сила упругости и сила трения. К взаимодействиям на полевом уровне можно отнести такие силы как: сила Кулона, сила Ампера, сила Лоренца.

Рассмотрим предлагаемые силы.

Сила тяготения.

Сила тяготения определяется из закона Всемирного тяготения и возникает на основании гравитационных взаимодействий тел, так как любое тело, обладающее массой, имеет гравитационное поле. Два тела взаимодействуют с силами равными по величине и противоположно направленными, прямо пропорциональными произведению масс и обратно пропорциональными квадрату расстояния между их центрами.

G = 6,67 . 10 -11 - гравитационная постоянная, определенная Кавендишем.

Рис.1

Одним из проявлений силы всемирного тяготения является сила тяжести, причем, ускорение свободного падения можно определить по формуле:

Где: М – масса Земли, R з – радиус Земли.

Сила тяжести.

Сила, с которой Земля притягивает к себе все тела, называется силой тяжести. Обозначается - F тяж, приложена к центру тяжести, направлена по радиусу к центру Земли, определяется по формуле F тяж = mg.

Где: m – масса тела; g – ускорение свободного падения (g=9,8м/с 2).

Вес тела.

Сила, с которой тело действует на горизонтальную опору или вертикальный подвес, вследствие земного притяжения, называется весом. Обозначается - Р, приложена к опоре или подвесу под центром тяжести, направлена вниз.

Рис.2

Если тело покоится, то можно утверждать, что вес равен силе тяжести и определяется по формуле Р = mg.

Если тело движется с ускорением вверх, то тело испытывает перегрузку. Вес определяется по формуле Р = m(g + a).

Рис.3

Вес тела приблизительно в два раза превышает по модулю силу тяжести (двукратная перегрузка) .

Если тело движется с ускорением вниз, то тело может испытывать невесомость в первые секунды движения. Вес определяется по формуле Р = m(g - a).

Рис. 4

Сила трения.

Сила, возникающая при движении одного тела по поверхности другого, направленная в сторону противоположную движению называется силой трения.

Рис.5

Точка приложения силы трения под центром тяжести, в сторону противоположную движению вдоль соприкасающихся поверхностей. Сила трения делится на силу трения покоя, силу трения качения, силу трения скольжения. Сила трения покоя это сила, препятствующая возникновению движения одного тела по поверхности другого. При ходьбе сила трения покоя, действующая на подошву, сообщает человеку ускорение. При скольжении связи между атомами первоначально неподвижных тел, разрываются, трение уменьшается. Сила трения скольжения зависит от относительной скорости движения соприкасающихся тел. Трение качения во много раз меньше трения скольжения.

Рис.6

Сила трения определяется по формуле:

F = µN

Где: µ - коэффициент трения безразмерная величина, зависит от характера обработки поверхности и от сочетания материалов соприкасающихся тел (силы притяжения отдельных атомов различных веществ существенно зависят от их электрических свойств);

N – сила реакции опоры - это сила упругости, возникающая в поверхности под действием веса тела.

Для горизонтальной поверхности: F тр = µmg

При движении твердого тела в жидкости или газе возникает сила вязкого трения. Сила вязкого трения значительно меньше силы сухого трения. Она также направлена в сторону, противоположную относительной скорости тела. При вязком трении нет трения покоя. Сила вязкого трения сильно зависит от скорости тела.

Сила упругости.

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Ее называют силой упругости.

Простейшим видом деформации является деформация растяжения или сжатия.

Рис. 7

При малых деформациях (|x| << l) сила упругости пропорциональна деформации тела и направлена в сторону, противоположную направлению перемещения частиц тела при деформации: F упр =kх

Это соотношение выражает экспериментально установленный закон Гука: сила упругости прямо пропорциональна изменению длины тела.

Где: k - коэффициент жесткости тела, измеряется в ньютонах на метр (Н/м). Коэффициент жесткости зависит от формы и размеров тела, а также от материала.

В физике закон Гука для деформации растяжения или сжатия принято записывать в другой форме:

Где: – относительная деформация; Е – модуль Юнга, который зависит только от свойств материала и не зависит от размеров и формы тела. Для различных материалов модуль Юнга меняется в широких пределах. Для стали, например, E2·10 11 Н/м 2 , а для резины E2·10 6 Н/м 2 ; – механическое напряжение.

При деформации изгиба F упр = - mg и F упр = - Kx.

Рис.8

Следовательно, можно найти коэффициент жесткости:

k =

В технике часто применяются спиралеобразные пружины. При растяжении или сжатии пружин возникают упругие силы, которые также подчиняются закону Гука, возникают деформации кручения и изгиба.

Рис. 9

4. Равнодействующая сила.

Равнодействующей называется сила, заменяющая действия нескольких сил. Эта сила применяется при решении задач с использованием нескольких сил.

Рис.10

На тело действуют сила тяжести и сила реакции опоры. Равнодействующая сила, в данном случае, находится по правилу параллелограмма и определяется по формуле

На основании определения равнодействующей, можно интерпретировать второй закон Ньютона как: равнодействующая сила равна произведению ускорения тела на его массу.

R = ma

Равнодействующая двух сил, действующих вдоль одной прямой в одну сторону, равна сумме модулей этих сил и направлена в сторону действия этих сил. Если силы действуют вдоль одной прямой, но в разные стороны, то равнодействующая сила равна разности модулей действующих сил и направлена в сторону действия большей силы.

Сила Архимеда.

Сила Архимеда - это выталкивающая сила, возникающая в жидкости или газе и действующая противоположно силе тяжести.

Закон Архимеда: на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу вытесненной жидкости

F A = mg =Vg

Где: – плотность жидкости или газа; V – объем погруженной части тела; g – ускорение свободного падения.

Рис.11

Центробежная сила.

Центробежная сила возникает при движении по окружности и направлена по радиусу из центра.

Где: v –линейная скорость; r – радиус окружности.

Рис.12

Сила Кулона.

В механике Ньютона используется понятие гравитационной массы, подобно этому в электродинамике первичным является понятие электрического заряда.Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия. Заряды взаимодействуют с силой Кулона.

Где: q 1 и q 2 – взаимодействующие заряды, измеряющиеся в Кл (Кулонах);

r – расстояние между зарядами; k – коэффициент пропорциональности.

k=9 . 10 9 (Н . м 2)/Кл 2

Часто его записывают в виде: ,где – электрическая постоянная, равная 8,85 . 10 12 Кл 2 /(Н . м 2).

Рис.13

Силы взаимодействия подчиняются третьему закону Ньютона: F 1 = - F 2 . Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках.

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Рис.14

Сила Ампера.

На проводник с током в магнитном поле действует сила Ампера.

F А = IBlsin

Где: I – сила тока в проводнике; В – магнитная индукция; l - длина проводника; – угол между направлением проводника и направлением вектора магнитной индукции.

Направление этой силы можно определить по правилу левой руки.

Если левую руку следует расположить таким образом, чтобы линии магнитной индукции входили в ладонь, вытянутые четыре пальца направлены вдоль действия силы тока, то отогнутый большой палец указывает направление силы Ампера.

Рис. 15

Сила Лоренца.

Сила, с которой электромагнитное поле действует на любое, находящееся в нем заряженное тело, называется силой Лоренца.

F = qvBsin

Рис. 16

Где: q – величина заряда; v – скорость движения заряженной частицы; В – магнитная индукция; – угол между векторами скорости и магнитной индукции.

Направление силы Лоренца можно определить по правилу левой руки.

В заключение урока предоставляется возможность учащимся заполнить таблицу.

Просмотр фрагмента (интерактивные модели по физике)

II . Решение заданий ЕГЭ

1.Две планеты с одинаковыми массами обращаются по круговым орбитам вокруг звезды. Для первой из них сила притяжения к звезде в 4 раза больше, чем для второй. Каково отношение радиусов орбит первой и второй планет?


1)
2)
3)
4)

Решение.
По закону Всемирного тяготения сила притяжения планеты к звезде обратно пропорциональна квадрату радиуса орбиты. Таким образом, в силу равенства масс планет () отношение сил притяжения к звезде первой и второй планет обратно пропорционально отношению квадратов радиусов орбит:

По условию, сила притяжения для первой планеты к звезде в 4 раза больше, чем для второй: а значит,

2. Во время выступления гимнастка отталкивается от трамплина (этап 1), делает сальто в воздухе (этап 2) и приземляется на ноги (этап 3). На каком(их) этапе(ах) движения гимнастка может испытывать состояние, близкое к невесомости?


1) только на 2 этапе
2) только на 1 и 2 этапах
3) на 1, 2 и 3 этапах
4) ни на одном из перечисленных этапов

Решение.
Вес - это сила, с которой тело давит на опору или растягивает подвес. Состояние невесомости заключается в том, что у тела отсутствует вес, при этом сила тяжести никуда не пропадает. Когда гимнастка отталкивается от трамплина, она давит на него. Когда гимнастка приземляется на ноги, то она давит на землю. Трамплин и земля играют роль опоры, поэтому на этапах 1 и 3 она не находится в состоянии, близком к невесомости. Напротив, во время полета (этап 2) у гимнастки попросту отсутствует опора, если пренебречь сопротивлением воздуха. Раз нет опоры, то нет и веса, а значит, гимнастка действительно испытывает состояние, близкое к невесомости.

3. Тело подвешено на двух нитях и находится в равновесии. Угол между нитями равен , а силы натяжения нитей равны 3 H и 4 H. Чему равна сила тяжести, действующая на тело?


1) 1 H
2) 5 H
3) 7 H
4) 25 H

Решение.
Всего на тело действует три силы: сила тяжести и силы натяжения двух нитей. Поскольку тело находится в равновесии, равнодействующая всех трех сил должна равняться нулю, а значит, модуль силы тяжести равен


Правильный ответ: 2.

4.На рисунке представлены три вектора сил, лежащих в одной плоскости и приложенных к одной точке.


1) 0 H
2) 5 H
3) 10 H
4) 12 H

Решение.
Из рисунка видно, что равнодействующая сил и совпадает с вектором силы Следовательно, модуль равнодействующей всех трех сил равен

Используя масштаб рисунка, находим окончательный ответ

Правильный ответ: 3.

5. Как движется материальная точка при равенстве нулю суммы всех действующих на нее сил? Какое утверждение верно?


1) скорость материальной точки обязательно равна нулю
2) скорость материальной точки убывает со временем
3) скорость материальной точки постоянна и обязательно не равна нулю
4) скорость материальной точки может быть любой, но обязательно постоянной во времени

Решение.
Согласно второму закону Ньютона, в инерциальной системе отсчета ускорение тела пропорционально равнодействующей всех сил. Поскольку, по условию, сумма все действующих на тело сил равна нулю, ускорение тела также равно нулю, а значит, скорость тела может быть любой, но обязательно постоянной во времени.
Правильный ответ: 4.

6. На брусок массой 5 кг, движущийся по горизонтальной поверхности, действует сила трения скольжения 20 Н. Чему будет равна сила трения скольжения после уменьшения массы тела в 2 раза, если коэффициент трения не изменится?


1) 5 Н
2) 10 Н
3) 20 Н
4) 40 Н

Решение.
Сила трения скольжения связана с коэффициентом трения и силой реакции опоры соотношением . Для бруска, движущегося по горизонтальной поверхности, по второму закону Ньютона, .

Таким образом, сила трения скольжения пропорциональна произведению коэффициента трения и массы бруска. Если коэффициент трения не изменится, то после уменьшения массы тела в 2 раза, сила трения скольжения также уменьшится в 2 раза и окажется равной

Правильный ответ: 2.

III . Подведение итога, оценивание.

IV . Д/з:

    На рисунке представлены три вектора сил, лежащих в одной плоскости и приложенных к одной точке.

Масштаб рисунка таков, что сторона одного квадрата сетки соответствует модулю силы 1 H. Определите модуль вектора равнодействующей трех векторов сил.

    На графике показана зависимость силы тяжести от массы тела для некоторой планеты.

Чему равно ускорение свободного падения на этой планете?

Интернет ресурс: 1.

2.

Литература:

    М.Ю.Демидова, И.И.Нурминский “ЕГЭ 2009”

    В.А.Касьянов “Физика. Профильный уровень”