Строение прокариотической клетки рисунок с подписями. Строение прокариотической клетки

Прокариоты или доядерные клетки - первые живые организмы на Земле. Несмотря на примитивное строение прокариотической клетки, бактерии, археи и цианобактерии смогли дожить до наших дней.

Компоненты

Прокариоты состоят из трёх компонентов:

  • оболочки;
  • цитоплазмы;
  • генетического материала.

Оболочку прокариот образуют три слоя:

  • плазмалемма - тонкая мембрана, покрывающая цитоплазму;
  • клеточная стенка - жёсткая наружная оболочка, содержащая белок муреин;
  • капсула - защитная структура, состоящая из полисахаридов или белков.

Капсула (слизистый слой, чехол) - необязательный компонент клетки. Образуется для защиты от неблагоприятных условий, например, высыхания или заморозков. Это дополнительный барьер, способный защитить клетку от вирусов (бактериофагов).

У некоторых бактерий капсула служит дополнительным источником запаса веществ.

Рис. 1. Оболочка прокариот.

Цитоплазма прокариот - гелеобразное вещество, содержащее:

ТОП-2 статьи которые читают вместе с этой

  • неорганические вещества;
  • белки;
  • полисахариды;
  • метаболиты (продукты метаболизма).

Главной особенностью строения прокариотической клетки является отсутствие ядра. Генетическая информация в виде кольцевой ДНК хранится непосредственно в цитоплазме и образует нехарактерную для эукариотов структуру - нуклеоид.
Помимо нуклеоида в цитоплазме прокариот постоянно находятся:

  • рибосомы - структуры, состоящие из двух субъединиц, которые осуществляют биосинтез белка;
  • мезосома - складка плазмалеммы, осуществляющая репликацию ДНК и клеточное дыхание (аналог митохондрии);
  • органеллы движения - длинные жгутики, состоящие из белка флагеллина, и короткие пили, образованные белком пилином.

В цитоплазме помимо органелл могут находиться запасы веществ - включения:

  • гликоген;
  • крахмал;
  • волютин (метахроматин) - гранулы полифосфорной кислоты;
  • жировые капли;
  • сера.

Плазмиды - непостоянные структуры прокариот. Состоят из небольших отдельных молекул ДНК, которыми бактерии могут обмениваться в ходе горизонтального переноса генов.

Рис. 2. Органоиды доядерной клетки.

Деление

Прокариоты размножаются прямым или бинарным делением - амитозом. К этому процессу клетка никак не подготавливается. Деление начинается с удвоения кольцевой ДНК на мезосоме без образования хромосом.
Процесс условно можно разделить на две стадии:

  • кариокинез - репликация и расхождение ДНК;
  • цитокинез - разделение путём перетяжки всего содержимого клетки.

Каждой дочерней клетке достаётся по одному кольцу ДНК. Однако остальные структуры распределяются неравномерно.

Рис. 3. Деление бактерии.

ДНК бактерий, составляющая нуклеоид, может включать несколько миллионов нуклеотидов. Однако бактерии быстро приспосабливаются к неблагоприятным условиям благодаря постоянному обмену генами, находящимися в коротких ДНК плазмид.

Что мы узнали?

Из урока 10 класса узнали о строении и функциональном назначении органелл прокариотической клетки. К прокариотам относятся бактерии, цианобактерии и археи. Они не имеют ядра, генетическая информация располагается непосредственно в цитоплазме в виде спутанной структуры - нуклеоида. Помимо одной кольцевой ДНК в клетках могут находиться небольшие молекулы ДНК в виде плазмид. Прокариоты размножаются посредством амитоза и способны обмениваться генами.

Тест по теме

Оценка доклада

Средняя оценка: 3.9 . Всего получено оценок: 342.

ХАРАКТЕРИСТИКА МИКРООРГАНИЗМОВ - ОБЪЕКТОВ БИОТЕХНОЛОГИЧЕСКИХ ПРОИЗВОДСТВ

К объектам промышленной микробиологии и биотехнологии можно отнести бактерии, дрожжи, микроскопические (плесневые) грибы, культуры клеток растений и животных, а также субклеточные структуры (вирусы, плазмиды, ДНК митохондрий и хлоропластов, ядерная ДНК).

Клеточные формы, включающие прокариотические и эукариотические организмы, отличаются по многим принципиальным признакам. Однако общими, важными в технологическом аспекте, свойствами микроорганизмов являются:

· высокая скорость обменных процессов. Это связано с большим отношением поверхности обмена к объему клетки. Для микроорганизмов вся поверхность клетки является поверхностью обмена. Так как клетки бактерий самые мелкие, то они растут и развиваются быстрее всех микроорганизмов, за ними следуют дрожжи и грибы. В свою очередь, скорость обменных процессов у микроорганизмов в десятки и сотни тысяч раз выше, чем у животных. Например, в организме одного быка весом в 500 кг за 24 часа образуется примерно 0,5 кг белка; за это же время 500 кг дрожжей могут синтезировать более 50 000 кг белка;

· пластичность обмена – высокая способность к адаптации (приспособлению к новым условиям существования). Несравненно большая гибкость обменных процессов у микроорганизмов по сравнению с растениями и животными объясняется их способностью синтезировать индуцибельные ферменты, т.е. ферменты, которые образуются в клетке только при наличии в среде соответствующих веществ;

· высокая степень изменчивости. Более высокая степень изменчивости микроорганизмов по сравнению с макроорганизмами связана с тем, что большинство микроорганизмов являются одноклеточными организмами. На отдельную клетку воздействовать легче, чем на организм, состоящий из множества клеток. Высокая степень изменчивости, быстрый рост и развитие, высокая скорость обменных процессов, образование многочисленного потомства – все эти свойства микроорганизмов делают их чрезвычайно удобными объектами для генетического анализа, так как опыты можно проводить в короткие сроки на огромном числе особей.

Строение прокариотической (бактериальной) клетки

Характерной особенностью прокариот является отсутствие системы внутриклеточных мембран.

Клеточная стенка придает форму клетке, предохраняет клетку от внешних воздействий (является механическим барьером клетки), защищает клетку от проникновения в нее избыточного количества влаги.

По химическому составу и строению клеточной стенки бактерии делятся на грамположительные (Грам+) и грамотрицательные (Грам-).

Клеточная стенка Грам+ состоит из пептидогликана – муреина (до 90 –95 %), тейхоевых кислот, полисахаридов. Она имеет однослойную структуру, плотно прилегает к цитоплазматической мембране.

У Грам- бактерий в составе клеточной стенки муреина мало (5 – 10 %), тейхоевые кислоты отсутствуют, в больших количествах содержатся липопротеиды и липополисахариды.

Клеточная стенка Грам- бактерий значительно тоньше, чем у Грам+, но имеет двухслойную структуру. Наружный слой состоит из липопротеидов и липополисахаридов, которые препятствуют проникновению токсических веществ. Поэтому Грам- бактерии более устойчивы к действию антибиотиков, ядовитых химических веществ и борьба с этими микроорганизмами в пищевых производствах менее эффективна, чем с Грам+ бактериями.

Цитоплазматическая мембрана (ЦПМ) играет важную роль в питании клетки, обладает избирательной проницаемостью. Состоит из белково-липидного комплекса, имеет трехслойную структуру. На внешней стороне мембраны расположены белки-переносчики, осуществляющие транспорт питательных веществ в клетку, а на внутренней стороне расположены окислительно-восстановительные и гидролитические ферменты. Между двумя белковыми слоями располагается фосфолипидный слой.

Мезосомы – мембранные образования, выпячивания ЦПМ. Благодаря им увеличивается поверхность обмена клетки. Участвуют в энергетические процессах, а также принимают участие в процессах деления (размножения) клетки.

Цитоплазма – внутриклеточное содержимое, полужидкий коллоидный раствор. Здесь содержится до 70 – 80 % воды от массы клетки, ферменты, субстраты питания и продукты обмена веществ клетки. В цитоплазме располагаются все компоненты прокариотической клетки.

Нуклеоид – носитель наследственной информации, единственная хромосома прокариотической клетки, принимает участие в размножении. Это компактное образование, занимающее центральную область в цитоплазме и состоящее из двухцепочной спирально закрученной нити ДНК, замкнутой вкольцо.

Многие бактерии, наряду с хромосомной ДНК, содержат и внехромосомную ДНК, также представленную двойными спиралями, замкнутыми в кольцо. Эти автономно реплицирующиеся элементы ДНК называют плазмидами.

Рибосомы – небольшие гранулы, содержащие РНК (60 %) и белок (40 %). На рибосомах осуществляется синтез клеточных белков.

Запасные вещества. Состоят из полисахаридных гранул (гликогена гранулезы), включений серы, жировых капель (содержат поли-b-масляную кислоту), волютина (полифосфатные гранулы).

У подвижных форм бактерий имеются жгутики (8), длинные нити состоящие из структурного белка – флагелина. Прикреплены жгутики к ЦПМ с помощью двух пар дисков основания – базального тельца (9).

У фотосинтезирующих бактерий в клетках имеются тилакоиды (10), с помощью которых осуществляется фотосинтез.

Слизистые виды бактерий имеют капсулу (11) или слизистый чехол, чаще состоящий из полисахаридов, реже – из полипептидов. Это дополнительный защитный барьер клетки, источник запасных питательных веществ.

Строение прокариотной клетки схематично показано на рис. 1.3.

Рис. 1.3. Строение прокариотной клетки

А – поверхностные клеточные структуры и внеклеточные образования: 1 – клеточная стенка; 2 – капсула; 3 – слизистые выделения; 4 – чехол; 5 жгутики; 6 – ворсинки; Б – цитоплазматические клеточные структуры: 7 ЦПМ; 8 – нуклеоид; 9 – рибосомы; 10 – цитоплазма; 11 – хроматофоры; 12 – хлоросомы; 13 – пластинчатые тилакоиды; 14 – фикобилисомы; 15 – трубчатые тилакоиды; 16 – мезосома; 17 – аэросомы (газовые вакуоли); 18 ламеллярные структуры; В запасные вещества: 19 – полисахаридные гранулы; 20 – гранулы поли-b-оксимасляной кислоты; 21 – гранулы полифосфата; 22 – цианофициновые гранулы; 23 – карбоксисомы (полиэдральные тела); 24 – включения серы; 25 – жировые капли; 26 – углеводородные гранулы

Структуры, расположенные снаружи от цитоплазматической мембраны (ЦПМ), называются поверхностными. Они включают клеточную стенку, слизистое вещество, жгутики и ворсинки. Клеточная стенка вместе со слизистым веществом называется клеточной оболочкой , а ЦПМ вместе с цитоплазмой образует протопласт.

Жгутики являются органами движения. Клетка может иметь от 1 до 1000 жгутиков, которые располагаются либо на полюсах, либо равномерно по всей поверхности. Толщина жгутика 10-20 нм, длина 3-15 мкм. С помощью жгутиков бактерии передвигаются со скоростью 20-60 мкм/с в направлении, где условия роста лучше: выше концентрация субстрата, кислорода, лучше освещенность. При отсутствии жгутиков клетки размером менее 4 мкм перемещаются в водной среде за счет броуновского движения. Нитчатые бактерии способны передвигаться за счет скольжения (скорость 2-11 мкм/с), отталкиваясь от твердого или вязкого субстрата с помощью микроскопических выпуклостей клеточной стенки.

Ворсинки – тонкие прямые нити длиной 0,3-4 мкм и диаметром 5-10 нм. Имеются не у всех бактерий. В движении клеток участия не принимают. Количество ворсинок может составлять от 10 до нескольких тысяч. Предполагается, что ворсинки участвуют в транспорте метаболитов и прикреплении бактерий к твердому субстрату. Кроме того, некоторые бактерии (например E. coli штамм K12) имеют половые ворсинки, называемые F-пили. Их количество 1-2 штуки на клетку. F-пили имеют вид полых белковых трубочек длиной от 0,5 до 10 мкм, по которым ДНК может передаваться от клетки-донора к клетке-реципиенту.

Слизистое вещество покрывает клеточную стенку практически всех прокариот. Оно состоит преимущественно из полисахаридов, а также белков, липидов и других полимеров. В зависимости от структуры и прочности связи с клеточной стенкой слизистое вещество делят на 3 типа: слизистый слой (имеет аморфную структуру и легко отделяется от клеточной стенки), капсула (имеет аморфную структуру, но трудно отделяется от клеточной стенки), чехол (имеет упорядоченную тонкую структуру). Толщина слоя слизистого вещества изменяется от долей мкм до десятков мкм. Благодаря слизистому веществу клетки способны слипаться в крупные колонии и прикрепляться к твердым поверхностям. Кроме того, слизь защищает клетку от механических повреждений, высыхания, проникновения бактериофагов и некоторых токсичных веществ, а также может служить источником запасных питательных веществ.



Клеточная стенка обеспечивает механическую прочность клетки и придает ей определенную форму. Она способна выдержать давление до 30-100 атм (3-10 МПа). Толщина стенки 10-100 мкм, масса составляет от 5 до 50 % сухого вещества клетки. Клеточная стенка состоит из семи групп веществ: пептидогликан, тейхоевые кислоты, полисахариды, белки, липиды, липополисахариды, липопротеиды. Пептидогликан содержится только в стенках прокариот (у эукариот отсутствует). По компонентам, структуре и механизму биосинтеза, клеточные стенки бактерий коренным образом отличаются от таковых у животных и растений. Поэтому лекарственные препараты, специфически воздействующие на бактериальные стенки и на процесс их синтеза, безвредны для высших организмов.

В зависимости от строения клеточной стенки бактерии делятся на 2 группы: грамположительные и грамотрицательные . В основе деления лежит способность воспринимать окраску по Граму (Х. Грам –датский ученый, предложивший этот метод окрашивания в 1884 г.). Методика окрашивания по Граму состоит в следующем. Фиксированные клетки обрабатывают основным красителем кристаллическим фиолетовым, а затем раствором иода. Иод образует с кристаллическим фиолетовым комплексное соединение, нерастворимое в воде и плохо растворимое в спирте. При последующей обработке клеток спиртом происходит дифференцировка клеток: у грамположительных видов этот комплекс удерживается клеткой и они остаются окрашенными (синими), у грамотрицательных видов окрашенный комплекс вымывается из клеток и они обесцвечиваются. Клеточные стенки грамположительных и грамотрицательных бактерий резко различаются как по химическому составу, так и по ультраструктуре (см. рис. 1.4).

Рис. 1.4. Клеточная стенка грамположительных (А) и грамотрицательных (Б) бактерий

1 - цитоплазматическая мембрана; 2 - пептидогликан; 3 - периплазматическое пространство; 4 - наружная мембрана: 5 - цитоплазма, в центре которой расположена ДНК

Цитоплазматическая мембрана (ЦПМ) является обязательным структурным элементом клетки, нарушение целостности которого вызывает ее гибель. ЦПМ представляет собой очень мягкое, пластичное, почти жидкое образование, состоящее из белков (50-75 %), липидов (15-45 %) и углеводов (0-20 %). Ее толщина 5-7,5 нм, а массовая доля в клетке 8-15 % от сухого вещества. ЦПМ служит осмотическим барьером и обеспечивает избирательное поступление в клетку и выход из нее различных молекул и ионов, а также участвует в превращениях клеточной энергии и биосинтетических процессах.

Цитоплазма представляет собой коллоидный раствор углеводов, аминокислот, минеральных и других веществ в воде. В ней присутствуют разнообразные структурные элементы: генетический аппарат (нуклеоид), рибосомы, мембраны (внутрицитоплазматические мембраны имеются не во всех прокариотных клетках) и различные включения.

Нуклеоид – молекула ДНК, имеющая форму замкнутого кольца, скрученного в упорядоченный клубок. Нуклеоид не отделен от цитоплазмы мембраной и практически не виден в световой микроскоп. Молекула ДНК (бактериальная хромосома) в развернутом виде имеет длину около 1 мм, т.е. в 1000 раз больше размера клетки.

Многие бактерии наряду с хромосомой ДНК содержат и внехромосомную ДНК, тоже представленную двойными спиралями, замкнутыми в кольцо и свернутыми в клубок. Такие молекулы внехромосомной ДНК, способные к автономной репликации называют плазмидами .

Рибосомы прокариот – это частицы размером 15-20 нм, состоящие из р-РНК (рибосомной РНК) и белка в соотношении 2:1. На рибосомах при участии информационной РНК (и-РНК) и транспортной РНК (т-РНК) осуществляется синтез белков. Рибосомы, связанные наподобие бус на цепи и-РНК, называют полирибосомами или полисомами. В зависимости от активности синтеза белка в бактериальной клетке может содержаться от 5 до 50 тысяч рибосом.

Внутриплазматические включения представлены гранулами запасных веществ (полисахариды, липиды, полипептиды, полифосфаты, отложения серы) и газовыми вакуолями, обеспечивающими плавучесть водных микроорганизмов.

Поступление питательных веществ в прокариотную клетку и выход из нее продуктов осуществляется через всю клеточную поверхность. Слизистый слой очень рыхлый и не является препятствием для проникновения веществ. Но диффузия в этом слое идет медленнее, чем в воде (примерно в 5 раз). Через клеточную стенку легко проникают небольшие молекулы и ионы. Крупные молекулы с молекулярной массой свыше 600 Д (Д – дальтон, 1 Д = 1,66 10 -27 кг) предварительно расщепляются внеклеточными ферментами до низкомолекулярных соединений.

Активная роль в процессе поступления питательных веществ в клетку принадлежит цитоплазматической мембране. Выделяют четыре механизма переноса веществ через ЦПМ: пассивную диффузию, облегченную диффузию, активный транспорт, перенос (транслокацию) групп.

Пассивная (простая) диффузия – самостоятельный переход веществ через ЦПМ за счет разности концентраций по обе стороны мембраны. Основным веществом, проникающим в клетку и выходящим из нее по этому механизму, является вода. Предположительно, путем простой диффузии в клетку поступают низкомолекулярные газы (кислород, водород, азот), а также яды, ингибиторы и другие чуждые клетке вещества.

Облегченная диффузия – переход веществ через ЦПМ по градиенту концентрации с помощью белков-переносчиков (пермеаз), которые обратимо связываются с переносимым веществом. В норме этот механизм иногда используется для входа и выхода из клетки низкомолекулярных органических веществ, но чаще включается только при нарушении внутриклеточных процессов.

Активный транспорт – процесс, аналогичный облегченной диффузии, но осуществляется с затратой клеточной энергии и позволяет переносить вещества против градиента концентрации. Этот механизм является основным способом поступления молекул и ионов в прокариотную клетку.

Транслокация групп – процесс, аналогичный активному транспорту, но сопровождающийся химической модификацией молекулы при переносе через ЦПМ. Например, сахара (глюкоза, фруктоза и др.) подвергаются фосфорилированию (присоединение фосфата с образованием фосфатного эфира).

На Земле существует всего два типа организмов: эукариоты и прокариоты. Они сильно различаются по своему строению, происхождению и эволюционному развитию, что будет подробно рассмотрено далее.

Вконтакте

Признаки прокариотической клетки

Прокариоты по-другому называют доядерными. У прокариотической клетки нет и других органоидов, имеющих мембранную оболочку ( , эндоплазматического ретикулума, комплекса Гольджи).

Также характерными чертами для них являются следующее:

  1. без оболочки и не образует связей с белками. Информация передаётся и считывается непрерывно.
  2. Все прокариоты – гаплоидные организмы.
  3. Ферменты располагаются в свободном состоянии (диффузно).
  4. Обладают способностью к спорообразованию при неблагоприятных условиях.
  5. Наличие плазмид – мелких внехромосомных молекул ДНК. Их функция — передача генетической информации, повышение устойчивости ко многим агрессивным факторам.
  6. Наличие жгутиков и пилей – внешних белковых образований необходимых для передвижения.
  7. Газовые вакуоли – полости. За счёт них организм способен передвигаться в толще воды.
  8. Клеточная стенка у прокариот (именно бактерий) состоит из муреина.
  9. Основными способами получения энергии у прокариот являются хемо- и фотосинтез.

К ним относятся бактерии и археи. Примеры прокариотов: спирохеты, протеобактерии, цианобактерии, кренархеоты.

Внимание! Несмотря на то, что у прокариот отсутствует ядро, они имеют его эквивалент – нуклеоид (кольцевую молекулу ДНК, лишённую оболочек), и свободные ДНК в виде плазмид.

Строение прокариотической клетки

Бактерии

Представители этого царства являются одними из самых древних жителей Земли и обладают высокой выживаемостью в экстремальных условия.

Различают грамположительные и грамотрицательные бактерии. Их главное отличие заключается в строении мембраны клеток. Грамположительные имеют более толстую оболочку, до 80% состоит из муреиновой основы, а также полисахаридов и полипептидов. При окрашивании по Граму они дают фиолетовый цвет. Большинство этих бактерий являются возбудителями заболеваний. Грамотрицательные же имеют более тонкую стенку, которая отделена от мембраны периплазматическим пространством. Однако такая оболочка обладает повышенной прочностью и гораздо сильнее противостоит воздействию антител.

Бактерии в природе играют очень большую роль:

  1. Цианобактерии (сине-зелёные водоросли) помогают поддерживать необходимый уровень кислорода в атмосфере. Они образуют больше половины всего О2 на Земле.
  2. Способствуют разложению органических останков, тем самым принимая участие в круговороте всех веществ, участвуют в образовании почвы.
  3. Фиксаторы азота на корнях бобовых.
  4. Очищают воды от отходов, к примеру, металлургической промышленности.
  5. Являются частью микрофлоры живых организмов, помогая максимально усваивать питательные вещества.
  6. Используются в пищевой промышленности для сбраживания Так получают сыры, творог, алкоголь, тесто.

Внимание! Помимо положительного значения бактерии играют и отрицательную роль. Многие из них вызывают смертельно опасные заболевания, такие как холера, брюшной тиф, сифилис, туберкулёз.

Бактерии

Археи

Ранее их объединяли с бактериями в единое царство Дробянок. Однако со временем выяснилось, что археи имеют свой индивидуальный путь эволюции и сильно отличаются от остальных микроорганизмов своим биохимическим составом и метаболизмом. Выделяют до 5 типов, самыми изученными считаются эвриархеоты и кренархеоты. Особенности архей таковы:

  • большинство из них являются хемоавтотрофами – синтезируют органические вещества из углекислого газа, сахара, аммиака, ионов металлов и водорода;
  • играют ключевую роль в круговороте азота и углерода;
  • участвуют в пищеварении в организмах человека и многих жвачных;
  • обладают более стабильной и прочной мембранной оболочкой за счёт наличия эфирных связей в глицерин-эфирных липидах. Это позволяет археям жить в сильнощелочных или кислых средах, а также при условии высоких температур;
  • клеточная стенка, в отличие от бактерий, не содержит пептидогликана и состоит из псевдомуреина.

Строение эукариотов

Эукариоты представляют собой надцарство организмов, в клетках которых содержится ядро. Кроме архей и бактерий все живые существа на Земле являются эукариотами (к примеру, растения, простейшие, животные). Клетки могут сильно отличаться по своей форме, строению, размерам и выполняемым функциям. Несмотря на это они сходны по основам жизнедеятельности, метаболизму, росту, развитию, способности к раздражению и изменчивости.

Эукариотические клетки могут превышать в размерах прокариотические в сотни и тысячи раз. Они включают в себя ядро и цитоплазму с многочисленными мембранными и немембранными органоидами. К мембранным относятся: эндоплазматический ретикулум, лизосомы, комплекс Гольджи, митохондрии, . Немембранные: рибосомы, клеточный центр, микротрубочки, микрофиламенты.

Строение эукариотов

Проведем сравнение клеток эукариотов разных царств.

К надцарству эукариот относятся царства:

  • простейшие. Гетеротрофы, некоторые способны к фотосинтезу (водоросли). Размножаются бесполым, половым путём и простым способом на две части. У большинства клеточная стенка отсутствует;
  • растения. Являются продуцентами, основной способ получения энергии – фотосинтез. Большая часть растений неподвижны, размножаются бесполым, половым и вегетативным путём. Клеточная стенка состоит из целлюлозы;
  • грибы. Многоклеточные. Различают низшие и высшие. Являются гетеротрофными организмами, не могут самостоятельно передвигаться. Размножаются бесполым, половым и вегетативным путём. Запасают гликоген и имеют прочную клеточную стенку из хитина;
  • животные. Различают 10 типов: губки, черви, членистоногие, иглокожие, хордовые и другие. Являются гетеротрофными организмами. Способны к самостоятельному передвижению. Основное запасающее вещество – гликоген. Оболочка клеток состоит из хитина, также как у грибов. Главный способ размножения – половой.

Таблица: Сравнительная характеристика растительной и животной клетки

Строение Клетка растения Клетка животного
Клеточная стенка Целлюлоза Состоит из гликокаликса — тонкого слоя белков, углеводов и липидов.
Местоположение ядра Расположено ближе к стенке Расположено в центральной части
Клеточный центр Исключительно у низших водорослей Присутствует
Вакуоли Содержат клеточный сок Сократительные и пищеварительные.
Запасное вещество Крахмал Гликоген
Пластиды Три вида: хлоропласты, хромопласты, лейкопласты Отсутствуют
Питание Автотрофное Гетеротрофное

Сравнение прокариот и эукариот

Особенности строения прокариотической и эукариотической клеток значительны, однако одно из главных различий касается хранения генетического материала и способа получения энергии.

Прокариоты и эукариоты фотосинтезируют по-разному. У прокариот этот процесс проходит на выростах мембраны (хроматофорах), уложенных в отдельные стопки. Бактерии не имеют фторой фотосистемы, поэтому не выделяют кислород, в отличие от сине-зелёных водорослей, которые образуют его при фотолизе. Источниками водорода у прокариот служат сероводород, Н2, разные органические вещества и вода. Основными пигментами являются бактериохлорофилл (у бактерий), хлорофилл и фикобилины (у цианобактерий).

К фотосинтезу из всех эукариот способны только растения. У них имеются специальные образования – хлоропласты, содержащие мембраны, уложенные в граны или ламеллы. Наличие фотосистемы II позволяет выделять кислород в атмосферу при процессе фотолиза воды. Источником молекул водорода служит только вода. Главным пигментов является хлорофилл, а фикобилины присутствуют лишь у красных водорослей.

Основные различия и характерные признаки прокариотов и эукариотов представлены в таблице ниже.

Таблица: Сходства и различия прокариотов и эукариотов

Сравнение Прокариоты Эукариоты
Время появления Более 3,5 млрд. лет Около 1,2 млрд. лет
Размеры клеток До 10 мкм От 10 до 100 мкм
Капсула Есть. Выполняет защитную функцию. Связана с клеточной стенкой Отсутствует
Плазматическая мембрана Есть Есть
Клеточная стенка Состоит из пектина или муреина Есть, кроме животных
Хромосомы Вместо них кольцевая ДНК. Трансляция и транскрипция проходят в цитоплазме. Линейные молекулы ДНК. Трансляция проходит в цитоплазме, а транскрипция в ядре.
Рибосомы Мелкие 70S-типа. Расположены в цитоплазме. Крупные 80S-типа, могут прикрепляться к эндоплазматической сети, находиться в пластидах и митохондриях.
Органоид с мембранной оболочкой Отсутствуют. Есть выросты мембраны — мезосомы Есть: митохондрии, комплекс Гольджи, клеточный центр, ЭПС
Цитоплазма Есть Есть
Отсутствуют Есть
Вакуоли Газовые (аэросомы) Есть
Хлоропласты Отсутствуют. Фотосинтез проходит в бактериохлорофиллах Присутствуют только у растений
Плазмиды Есть Отсутствуют
Ядро Отсутствует Есть
Микрофиламенты и микротрубочки. Отсутствуют Есть
Способы деления Перетяжка, почкование, коньюгация Митоз, мейоз
Взаимодействие или контакты Отсутствуют Плазмодесмы, десмосомы или септы
Типы питания клеток Фотоавтотрофный, фотогетеротрофный, хемоавтотрофный, хемогетеротрофный Фототрофный (у растений) эндоцитоз и фагоцитоз (у остальных)

Отличия прокариот и эукариот

Сходство и различия прокариотических и эукариотических клеток

Вывод

Сравнение прокариотического и эукариотического организма достаточно трудоёмкий процесс, требующий рассмотрения множества нюансов. Они имеют между собой много общего в плане строения, протекающих процессов и свойств всего живого. Различия же кроются в выполняемых функциях, способах питания и внутренней организации. Тот, кто интересуется данной темой, может воспользоваться данной информацией.

Тип урока : комбинированный.

Методы : словесный, наглядный, практический, проблемно-поисковый.

Цели урока

Образовательная: углубить знания учащихся о строении клеток эукариот, научить применять их на практических занятиях.

Развивающие: совершенствовать умения учащихся работать с дидактическим материалом; развивать мышление учащихся, предлагая задания для сравнения клеток прокариот и эукариот, клеток растений и клетки животных с выявлением схожих и отличительных признаков.

Оборудование : плакат «Строение цитоплазматической мембраны»; карточки-задания; раздаточный материал (строение прокариотической клетки, типичная растительная клетка, строение животной клетки).

Межпредметные связи : ботаника, зоология, анатомия и физиология человека.

План урока

I. Организационный момент

Проверка готовности к уроку.
Проверка списочного состава учащихся.
Сообщение темы и целей урока.

II. Изучение нового материала

Разделение организмов на про- и эукариоты

По форме клетки необычайно разнообразны: одни имеют округлую форму, другие похожи на звездочки со многими лучами, третьи вытянутые и т.д. Различны клетки и по размеру – от мельчайших, с трудом различимых в световом микроскопе, до прекрасно видимых невооруженным глазом (например, икринки рыб и лягушек).

Любое неоплодотворенное яйцо, в том числе гигантские окаменевшие яйца ископаемых динозавров, которые хранятся в палеонтологических музеях, тоже были когда-то живыми клетками. Однако, если говорить о главных элементах внутреннего строения, все клетки схожи между собой.

Прокариоты (от лат. pro – перед, раньше, вместо и греч. karyon – ядро) – это организмы, клетки которых не имеют ограниченного мембраной ядра, т.е. все бактерии, включая архебактерии и цианобактерии. Общее число видов прокариот около 6000. Вся генетическая информация прокариотической клетки (генофор) содержится в одной-единственной кольцевой молекуле ДНК. Митохондрии и хлоропласты отсутствуют, а функции дыхания или фотосинтеза, обеспечивающие клетку энергией, выполняет плазматическая мембрана (рис. 1). Размножаются прокариоты без выраженного полового процесса путем деления надвое. Прокариоты способны осуществлять целый ряд специфических физиологических процессов: фиксируют молекулярный азот, осуществляют молочнокислое брожение, разлагают древесину, окисляют серу и железо.

После вступительной беседы учащиеся рассматривают строение прокариотической клетки, сравнивая основные особенности строения с типами эукариотической клетки (рис. 1).

Эукариоты – это высшие организмы, имеющие четко оформленное ядро, которое оболочкой отделяется от цитоплазмы (кариомембраной). К эукариотам относятся все высшие животные и растения, а также одноклеточные и многоклеточные водоросли, грибы и простейшие. Ядерная ДНК у эукариот заключена в хромосомах. Эукариоты обладают клеточными органоидами, ограниченными мембранами.

Отличия эукариот от прокариот

– Эукариоты имеют настоящее ядро: генетический аппарат эукариотической клетки защищен оболочкой, схожей с оболочкой самой клетки.
– Включенные в цитоплазму органоиды окружены мембраной.

Строение клеток растений и животных

Клетка любого организма представляет собой сис-тему. Она состоит из трех взаимосвязанных между собой частей: оболочки, ядра и цитоплазмы.

При изучении ботаники, зоологии и анатомии человека вы уже знакомились со строением различных типов клеток. Кратко повторим этот материал.

Задание 1. Определите по рисунку 2, каким организмам и типам тканей соответствуют клетки под цифрами 1–12. Чем обусловлена их форма?

Строение и функции органоидов растительных и животных клеток

Используя рисунки 3 и 4 и пользуясь Биологическим энциклопедическим словарем и учебником, учащиеся заполняют таблицу, сравнивая животную и растительную клетки.

Таблица. Строение и функции органоидов растительных и животных клеток

Органоиды клетки

Строение органоидов

Функция

Присутствие органоидов в клетках

растений

животных

Хлоропласт

Представляет собой разновидность пластид

Окрашивает растения в зеленый цвет, в нем происходит фотосинтез

Лейкопласт

Оболочка состоит из двух элементарных мембран; внутренняя, врастая в строму, образует немногочисленные тилакоиды

Синтезирует и накапливает крахмал, масла, белки

Хромопласт

Пластиды с желтой, оранжевой и красной окраской, окраска обусловлена пигментами – каротиноидами

Красная, желтая окраска осенних листьев, сочных плодов и др.

Занимает до 90% объема зрелой клетки, заполнена клеточным соком

Поддержание тургора, накопление запасных веществ и продуктов обмена, регуляция осмотического давления и др.

Микротрубочки

Состоят из белка тубулина, расположены около плазматической мембраны

Участвуют в отложении целлюлозы на клеточных стенках, перемещении в цитоплазме различных органоидов. При делении клетки микротрубочки составляют основу структуры веретена деления

Плазматическая мембрана (ЦПМ)

Состоит из липидного бислоя, пронизанного белками, погруженными на различную глубину

Барьер, транспорт веществ, сообщение клеток между собой

Гладкий ЭПР

Система плоских и ветвящихся трубочек

Осуществляет синтез и выделение липидов

Шероховатый ЭПР

Название получил из-за множества рибосом, находящихся на его поверхности

Синтез белков, их накопление и преобразование для выделения из клетки наружу

Окружено двойной ядерной мембраной, имеющей поры. Наружная ядерная мембрана образует непрерывную структуру с мембраной ЭПР. Содержит одно или несколько ядрышек

Носитель наследственной информации, центр регуляции активности клетки

Клеточная стенка

Состоит из длинных молекул целлюлозы, собранных в пучки, называемые микрофибриллами

Внешний каркас, защитная оболочка

Плазмодесмы

Мельчайшие цитоплазматические каналы, которые пронизывают клеточные стенки

Объединяют протопласты соседних клеток

Митохондрии

Синтез АТФ (аккумуляция энергии)

Аппарат Гольджи

Состоит из стопки плоских мешочков – цистерн, или диктиосом

Синтез полисахаридов, формирование ЦПМ и лизосом

Лизосомы

Внутриклеточное пищеварение

Рибосомы

Состоят из двух неравных субъединиц –
большой и малой, на которые могут диссоциировать

Место биосинтеза белка

Цитоплазма

Состоит из воды с большим количеством растворенных в ней веществ, содержащих глюкозу, белки и ионы

В ней расположены другие органоиды клетки и осуществляются все процессы клеточного метаболизма

Микрофиламенты

Волокна из белка актина, обычно располагаются пучками вблизи поверхности клеток

Участвуют в подвижности и изменении формы клеток

Центриоли

Могут входить в состав митотического аппарата клетки. В диплоидной клетке содержится две пары центриолей

Участвуют в процессе деления клетки у животных; в зооспорах водорослей, мхов и у простейших образуют базальные тельца ресничек

Микроворсинки

Выступы плазматической мембраны

Увеличивают наружную поверхность клетки, микроворсинки в совокупности образуют кайму клетки

Выводы

1. Клеточная стенка, пластиды и центральная вакуоль присущи только растительным клеткам.
2. Лизосомы, центриоли, микроворсинки присутствуют в основном только в клетках животных организмов.
3. Все остальные органоиды характерны как для растительных, так и для животных клеток.

Строение оболочки клеток

Клеточная оболочка располагается снаружи клетки, отграничивая последнюю от внешней или внутренней среды организма. Ее основу составляет плазмалемма (клеточная мембрана) и углеводно-белковая составляющая.

Функции клеточной оболочки:

– поддерживает форму клетки и придает механическую прочность клетке и организму в целом;
– защищает клетку от механических повреждений и попадания в нее вредных соединений;
– осуществляет узнавание молекулярных сигналов;
– регулирует обмен веществ между клеткой и средой;
– осуществляет межклеточное взаимодействие в многоклеточном организме.

Функция клеточной стенки:

– представляет собой внешний каркас – защитную оболочку;
– обеспечивает транспорт веществ (через клеточную стенку проходит вода, соли, молекулы многих органических веществ).

Наружный слой клеток животных, в отличие от клеточных стенок растений, очень тонкий, эластичный. Он не виден в световой микроскоп и состоит из разнообразных полисахаридов и белков. Поверхностный слой животных клеток называется гликокаликсом , выполняет функцию непосредственной связи клеток животных с внешней средой, со всеми окружающими ее веществами, опорной роли не выполняет.

Под гликокаликсом животной и клеточной стенкой растительной клетки расположена плазматическая мембрана, граничащая непосредственно с цитоплазмой. В состав плазматической мембраны входят белки и липиды. Они расположены упорядоченно за счет различных химических взаимодействий друг с другом. Молекулы липидов в плазматической мембране расположены в два ряда и образуют сплошной липидный бислой. Молекулы белков не образуют сплошного слоя, они располагаются в слое липидов, погружаясь в него на разную глубину. Молекулы белков и липидов подвижны.

Функции плазматической мембраны:

– образует барьер, отграничивающий внутреннее содержимое клетки от внешней среды;
– обеспечивает транспорт веществ;
– обеспечивает связь между клетками в тканях многоклеточных организмов.

Поступление веществ в клетку

Поверхность клетки не сплошная. В цитоплазматической мембране есть многочисленные мельчайшие отверстия – поры, через которые с помощью или без помощи специальных белков, внутрь клетки могут проникать ионы и мелкие молекулы. Кроме того, некоторые ионы и мелкие молекулы могут попадать в клетку непосредственно через мембрану. Поступление важнейших ионов и молекул в клетку не пассивная диффузия, а активный транспорт, требующий затрат энергии. Транспорт веществ носит избирательный характер. Избирательная проницаемость клеточной мембраны носит название полупроницаемости .

Путем фагоцитоза внутрь клетки поступают: крупные молекулы органических веществ, например белков, полисахаридов, частицы пищи, бактерии. Фагоцитоз осуществляется с участием плазматической мембраны. В том месте, где поверхность клетки соприкасается с частицей какого-либо плотного вещества, мембрана прогибается, образует углубление и окружает частицу, которая в «мембранной капсуле» погружается внутрь клетки. Образуется пищеварительная вакуоль, и в ней перевариваются поступившие в клетку органические вещества.

Путем фагоцитоза питаются амебы, инфузории, лейкоциты животных и человека. Лейкоциты поглощают бактерии, а также разнообразные твердые частицы, случайно попавшие в организм, защищая его таким образом от болезнетворных бактерий. Клеточная стенка растений, бактерий и синезеленых водорослей препятствует фагоцитозу, и потому этот путь поступления веществ в клетку у них не реализуется.

Через плазматическую мембрану в клетку проникают и капли жидкости, содержащие в растворенном и взвешенном состоянии разнообразные вещества.Это явление было названо пиноцитозом . Процесс поглощения жидкости сходен с фагоцитозом. Капля жидкости погружается в цитоплазму в «мембранной упаковке». Органические вещества, попавшие в клетку вместе с водой, начинают перевариваться под влиянием ферментов, содержащихся в цитоплазме. Пиноцитоз широко распространен в природе и осуществляется клетками всех животных.

III. Закрепление изученного материала

На какие две большие группы разделяются все организмы по строению ядра?
Какие органоиды свойственны только растительным клеткам?
Какие органоиды свойственны только животным клеткам?
Чем различается строение оболочки клеток растений и животных?
Каковы два способа поступления веществ в клетку?
Каково значение фагоцитоза для животных?