Свойство прямой параллельной двум пересекающимся плоскостям. Свойства параллельных плоскостей

На этом уроке мы рассмотрим три свойства параллельных плоскостей: о пересечении двух параллельных плоскостей третьей плоскостью; о параллельных отрезках, заключенных между параллельными плоскостями; и о рассечении сторон угла параллельными плоскостями. Далее решим несколько задач с использованием этих свойств.

Тема: Параллельность прямых и плоскостей

Урок: Свойства параллельных плоскостей

Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.

Доказательство

Пусть даны параллельные плоскости и и плоскость , которая пересекает плоскости и по прямым а и b соответственно (Рис. 1.).

Прямые а и b лежат в одной плоскости, а именно в плоскости γ. Докажем, что прямые а и b не пересекаются.

Если бы прямые а и b пересекались, то есть имели бы общую точку, то эта общая точка принадлежала бы двум плоскостям и , и , что невозможно, так как они параллельны по условию.

Итак, прямые а и b параллельны, что и требовалось доказать.

Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.

Доказательство

Пусть даны параллельные плоскости и и параллельные прямые АВ и С D , которые пересекают эти плоскости (Рис. 2.). Докажем, что отрезки АВ и С D равны.

Две параллельные прямые АВ и С D образуют единственную плоскость γ, γ = АВ D С . Плоскость γ пересекает параллельные плоскости и по параллельным прямым (по первому свойству). Значит, прямые АС и В D параллельны.

Прямые АВ и С D также параллельны (по условию). Значит, четырехугольник АВ D С - параллелограмм, так как его противоположные стороны попарно параллельны.

Из свойств параллелограмма следует, что отрезки АВ и С D равны, что и требовалось доказать.

Параллельные плоскости рассекают стороны угла на пропорциональные части.

Доказательство

Пусть нам даны параллельные плоскости и, которые рассекают стороны угла А (Рис. 3.). Нужно доказать, что .

Параллельные плоскости и рассечены плоскостью угла А . Назовем линию пересечения плоскости угла А и плоскости - ВС, а линию пересечения плоскости угла А и плоскости - В 1 С 1 . По первому свойству, линии пересечения ВС и В 1 С 1 параллельны.

Значит, треугольники АВС и АВ 1 С 1 подобны. Получаем:

3. Математический сайт Цегельного Виталия Станиславовича ()

4. Фестиваль педагогических идей "Открытый урок" ()

1. Точка О - общая середина каждого из отрезков АА 1 , ВВ 1 , СС 1 , которые не лежат в одной плоскости. Докажите, что плоскости АВС и А 1 В 1 С 1 параллельны.

2. Докажите, что через две скрещивающиеся прямые можно провести параллельные плоскости.

3. Докажите, что прямая, пересекающая одну из двух параллельных плоскостей, пересекает и вторую.

4. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил.

Задания 6, 8, 9 стр. 29

е свойство параллельных прямых, называемое транзитив ностью параллельности:

  • Если две прямые а и b параллельны третьей прямой с, то они параллель ны друг другу.

Но доказать это свойство в стереометрии сложнее. На плоскости непараллельные прямые обязаны пересекаться и потому не могут быть одновременно параллельны третьей (иначе нарушается аксиома параллельных). В про странстве существуют непараллельные и при том непересекающиеся прямые если они лежат в разных плоскостях. О таких прямых говорят, что они скрещиваются.

На рис. 4 изображён куб; прямые АВ и ВС пересекаются, АВ и CD параллельны, а АВ и В С скрещиваются. В дальнейшем мы часто будем прибегать к помощи куба, чтобы иллюс трировать понятия и факты стереометрии. Наш куб склеен из шести граней-квадратов. Исходя из этого, мы будем выводить и другие его свойства. Например, можно утверждать, что прямая АВ параллельна C D, потому что обе они параллельны общей стороне CD со держащих их квадратов.

В стереометрии отношение параллельности рассматривается и для плоскостей: две пло скости или прямая и плоскость параллельны, если они не имеют общих точек. Прямую и плоскость удобно считать параллельными и в том случае, когда лежит в плоскости. Для плоскостей и прямых справедливы теоремы о транзитивности:

  • Если две плоскости параллельны третьей плоскости, то они параллельны между собой.
  • Если прямая и плоскость параллельны некоторой прямой(или плоскости), то они параллельны друг другу.

Наиболее важный частный случай второй теоремы- признак параллельности прямой и плоскости:

  • Прямая параллельна плоскости, если она параллельна некоторой прямой в этой плоскости.

А вот признак параллельности плоскостей:

  • Если две пересекающиеся прямые в одной плоскости соответственно параллельны двум пересекающимся прямым в другой плоскости, то и плоскости параллельны.

Часто используется и такая простая теорема:

  • Прямые, по которым две параллельные плоскости пересекаются третьей, параллельны друг другу.

Посмотрим еще раз на куб (рис. 4). Из признака параллельности прямой и плоскости следует, например, что прямая А В параллельна плоскости АВСD (так как она параллельна прямой АВ в этой плоскости), а противоположные грани куба, в частности А В С D и ABCD, параллельны по признаку параллельности плоскостей: прямые A B и B С в одной грани соответственно параллельны прямым АВ и ВС в другой. И чуть менее простой пример. Плоскость, содержащая параллельные прямые AA и СС , пересекают параллельные плоскости АВСD и A B C D по прямым АС и А С , значит, эти прямые параллельны: аналогично, параллельные прямые В С и А D. Следовательно, параллельные плоскости АВ С и А DC, пересекающие куб по треугольникам.

III. Изображение пространственных фигур.

Есть такой афоризм Геометрия это искус ство правильно рассуждать на неправильном чертеже. Действительно, если вернуться к из ложенным выше рассуждениям, то окажется:

единственная польза, которую мы извлекли из сопровождавшего их рисунка куба, состоит в том, что он сэкономил нам место на объясне нии обозначений. С тем же успехом можно было изобразить его, как тело на рис. 4, я, хотя, очевидно, представленное на нём нечто не только не куб, но и не многогранник. И всё же в приведённом афоризме заключена лишь часть правды. Ведь прежде, чем рассуждать излагать готовое доказательство, надо его при думать. А для этого нужно ясно представлять себе заданную фигуру, соотношения между её элементами. Выработать такое представление помогает хороший чертёж. Более того, как мы увидим, в стереометрии удачный чертёж мо жет стать не просто иллюстрацией, а основой решения задачи.

Художник (вернее, художник-реалист) на рисует наш куб таким, каким мы его видим (рис. 5, б), т. е. в перспективе, или централь ной проекции. При центральной проекции из точки О (центр проекции) на плоскость а про извольная точка Х изображается точкой X, в которой а пересекается с прямой ОХ (рис. 6). Центральная проекция сохраняет прямоли нейное расположение точек, но, как правило, переводит параллельные прямые в пересека ющиеся, не говоря уже о том, что изменяет расстояния и углы. Изучение её свойств при вело к появлению важного раздела геометрии (см. статью Проективная геометрия).

Но в геометри-ческих чертежах исполь-зуется другая проекция. Можно сказать, что она получается из централь-ной когда центр О уда-ляется в бесконечность и прямые ОХ становятся па раллельными.

Выберем плоскость а и пересекающую её прямую l. Проведём через точку Х прямую, па раллельную l. Точка X, в которой эта прямая встречается с а, и есть параллельная проекция Х на плоскость, а вдоль прямой l (рис. 7). Про екция фигуры состоит из проекций всех её точек. В геометрии под изображением фигуры понимают её параллельную проекцию.

В частности, изображение прямой линии это прямая линия или (в исключительном слу чае, когда прямая параллельна направлению проекции) точка. На изображении параллель

Параллельность плоскостей является понятием, впервые появившимся в эвклидовой геометрии более двух тысяч лет назад.

Основные характеристики классической геометрии

Рождение этой научной дисциплины связано с известнейшим трудом древнегреческого мыслителя Эвклида, написавшего в третьем веке до нашей эры памфлет «Начала». Разделенные на тринадцать книг, «Начала» являлись высшим достижением всей античной математики и излагали фундаментальные постулаты, связанные со свойствами плоских фигур.

Классическое условие параллельности плоскостей было сформулировано следующим образом: две плоскости могут назваться параллельными, если они между собой не имеют общих точек. Об этом гласил пятый постулат эвклидового труда.

Свойства параллельных плоскостей

В эвклидовой геометрии их выделяют, как правило, пять:

  • Свойство первое (описывает параллельность плоскостей и их единственность). Через одну точку, которая лежит вне конкретной данной плоскости, мы можем провести одну и только одну параллельную ей плоскость
  • Свойство третье (иными словами оно называется свойством прямой, пересекающей параллельность плоскостей). Если отдельно взятая прямая линия пересекает одну из этих параллельных плоскостей, то она пересечет и другую.
  • Свойство четвертое (свойство прямых линий, высеченных на плоскостях, параллельных друг другу). Когда две параллельные плоскости пересекаются третьей (под любым углом), линии их пересечения также являются параллельными
  • Свойство пятое (свойство, описывающее отрезки разных параллельных прямых, которые заключены между плоскостями, параллельными друг другу). Отрезки тех параллельных прямых, которые заключены между двумя параллельными плоскостями, обязательно равны.

Параллельность плоскостей в неэвклидовых геометриях

Такими подходами являются в частности геометрия Лобачевского и Римана. Если геометрия Эвклида реализовывалась на плоских пространствах, то у Лобачевского в отрицательно искривленных пространствах (выгнутых попросту говоря), а у Римана она обретает свою реализацию в положительно искривленных пространствах (иными словами - сферах). Существует весьма распространенное стереотипное мнение, что у Лобачевского параллельные плоскости (и линии тоже) пересекаются.

Однако это неверно. Действительно рождение гиперболической геометрии было связано с доказательством пятого постулата Эвклида и изменением взглядов на него, однако само определение параллельных плоскостей и прямых подразумевает, что они не могут пересечься ни у Лобачевского, ни у Римана, в каких бы пространствах они ни реализовывались. А изменение взглядов и формулировок заключалось в следующем. На смену постулату о том, что лишь одну параллельную плоскость можно провести через точку, не лежащую на данной плоскости, пришла другая формулировка: через точку, которая не лежит на данной конкретной плоскости, могут проходить две, по крайней мере, прямые, которые лежат в одной плоскости с данной и не пересекают ее.

В данной статье будут изучены вопросы параллельности плоскостей. Дадим определение плоскостям, которые параллельны между собой; обозначим признаки и достаточные условия параллельности; рассмотрим теорию на иллюстрациях и практических примерах.

Yandex.RTB R-A-339285-1 Определение 1

Параллельные плоскости – плоскости, не имеющие общих точек.

Чтобы обозначить параллельность применяют такой символ: ∥ . Если заданы две плоскости: α и β , являющиеся параллельными, краткая запись об этом будет выглядеть так: α ‖ β .

На чертеже, как правило, плоскости, параллельные друг другу, отображаются как два равных параллелограмма, имеющих смещение относительно друг друга.

В речи параллельность можно обозначить так: плоскости α и β параллельны, а также – плоскость α параллельна плоскости β или плоскость β параллельна плоскости α .

Параллельность плоскостей: признак и условия параллельности

В процессе решения геометрических задач зачастую возникает вопрос: а параллельны ли заданные плоскости между собой? Для получения ответа на этот вопрос используют признак параллельности, который также является достаточным условием параллельности плоскостей. Запишем его как теорему.

Теорема 1

Плоскости являются параллельными, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.

Доказательство этой теоремы приводится в программе геометрии за 10 - 11 класс.

В практике для доказательства параллельности, в том числе, применяют две следующие теоремы.

Теорема 2

Если одна из параллельных плоскостей параллельна третьей плоскости, то другая плоскость или также параллельна этой плоскости, или совпадает с ней.

Теорема 3

Если две несовпадающие плоскости перпендикулярны некоторой прямой, то они параллельны.

На основе этих теорем и самого признака параллельности доказывается факт параллельности любых двух плоскостей.

Рассмотрим подробнее необходимое и достаточное условие параллельности плоскостей α и β , заданных в прямоугольной системе координат трехмерного пространства.

Допустим, что в некоторой прямоугольной системе координат задана плоскость α, которой соответствует общее уравнение A 1 x + B 1 y + C 1 z + D 1 = 0 , а также задана плоскость β , которую определяет общее уравнение вида A 2 x + B 2 y + C 2 z + D 2 = 0 .

Теорема 4

Для параллельности заданных плоскостей α и β необходимо и достаточно, чтобы система линейных уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 не имела решения (являлась несовместной).

Доказательство

Предположим, что заданные плоскости, определяемые уравнениями A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 являются параллельными, а значит не имеют общих точек. Таким образом, не существует ни одной точки в прямоугольной системе координат трехмерного пространства, координаты которой отвечали бы условиям одновременно обоих уравнений плоскостей, т.е. система A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 не имеет решения. Если указанная система не имеет решений, тогда не существует ни одной точки в прямоугольной системе координат трехмерного пространства, чьи координаты одновременно отвечали бы условиям обоих уравнений системы. Следовательно, плоскости, заданные уравнениями A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 не имеют ни одной общей точки, т.е. они параллельны.

Разберем использование необходимого и достаточного условия параллельности плоскостей.

Пример 1

Заданы две плоскости: 2 x + 3 y + z - 1 = 0 и 2 3 x + y + 1 3 z + 4 = 0 . Необходимо определить, являются ли они параллельными.

Решение

Запишем систему уравнений из заданных условий:

2 x + 3 y + z - 1 = 0 2 3 x + y + 1 3 z + 4 = 0

Проверим, возможно ли решить полученную систему линейных уравнений.

Ранг матрицы 2 3 1 2 3 1 1 3 равен одному, поскольку миноры второго порядка равны нулю. Ранг матрицы 2 3 1 1 2 3 1 1 3 - 4 равен двум, поскольку минор 2 1 2 3 - 4 отличен от нуля. Таким образом, ранг основной матрицы системы уравнений меньше, чем ранг расширенной матрицы системы.

Совместно с этим, из теоремы Кронекера-Капелли следует: система уравнений 2 x + 3 y + z - 1 = 0 2 3 x + y + 1 3 z + 4 = 0 не имеет решений. Этим фактом доказывается, что плоскости 2 x + 3 y + z - 1 = 0 и 2 3 x + y + 1 3 z + 4 = 0 являются параллельными.

Отметим, что, если бы мы применили для решения системы линейных уравнений метод Гаусса, это дало бы тот же результат.

Ответ: заданные плоскости параллельны.

Необходимое и достаточное условие параллельности плоскостей возможно описать по-другому.

Теорема 5

Чтобы две несовпадающие плоскости α и β были параллельны друг другу необходимо и достаточно, чтобы нормальные векторы плоскостей α и β являлись коллинеарными.

Доказательство сформулированного условия базируется на определении нормального вектора плоскости.

Допустим, что n 1 → = (A 1 , B 1 , C 1) и n 2 → = (A 2 , B 2 , C 2) являются нормальными векторами плоскостей α и β соответственно. Запишем условие коллинеарности данных векторов:

n 1 → = t · n 2 ⇀ ⇔ A 1 = t · A 2 B 1 = t · B 2 C 1 = t · C 2 , где t – некое действительное число.

Таким образом, чтобы несовпадающие плоскости α и β с заданными выше нормальными векторами были параллельны, необходимо и достаточно, чтобы имело место действительное число t , для которого верно равенство:

n 1 → = t · n 2 ⇀ ⇔ A 1 = t · A 2 B 1 = t · B 2 C 1 = t · C 2

Пример 2

В прямоугольной системе координат трехмерного пространства заданы плоскости α и β . Плоскость α проходит через точки: A (0 , 1 , 0) , B (- 3 , 1 , 1) , C (- 2 , 2 , - 2) . Плоскость β описывается уравнением x 12 + y 3 2 + z 4 = 1 Необходимо доказать параллельность заданных плоскостей.

Решение

Удостоверимся, что заданные плоскости не совпадают. Действительно, так и есть, поскольку координаты точки A не соответствуют уравнению плоскости β .

Следующим шагом определим координаты нормальных векторов n 1 → и n 2 → , соответствующие плоскостям α и β . Также проверим условие коллинеарности этих векторов.

Вектор n 1 → можно задать, взяв векторное произведение векторов A B → и A C → . Их координаты соответственно: (- 3 , 0 , 1) и (- 2 , 2 , - 2) . Тогда:

n 1 → = A B → × A C → = i → j → k → - 3 0 1 - 2 1 - 2 = - i → - 8 j → - 3 k → ⇔ n 1 → = (- 1 , - 8 , - 3)

Для получения координат нормального вектора плоскости x 12 + y 3 2 + z 4 = 1 приведем это уравнение к общему уравнению плоскости:

x 12 + y 3 2 + z 4 = 1 ⇔ 1 12 x + 2 3 y + 1 4 z - 1 = 0

Таким образом: n 2 → = 1 12 , 2 3 , 1 4 .

Осуществим проверку, выполняется ли условие коллинеарности векторов n 1 → = (- 1 , - 8 , - 3) и n 2 → = 1 12 , 2 3 , 1 4

Так как - 1 = t · 1 12 - 8 = t · 2 3 - 3 = t · 1 4 ⇔ t = - 12 , то векторы n 1 → и n 2 → связаны равенством n 1 → = - 12 · n 2 → , т.е. являются коллинеарными.

Ответ : плоскости α и β не совпадают; их нормальные векторы коллинеарные. Таким образом, плоскости α и β параллельны.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Параллельности плоскостей. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны.
Доказательство. Пусть a и b - данные плоскости, а 1 и а 2 – прямые в плоскости a , пересекающиеся в точке А , b 1 и b 2 соответственно параллельные им прямые в плоскости b . Допустим, что плоскости a и b не параллельны, то есть они пересекаются по некоторой прямой с . Прямая а 1 параллельна прямой b 1 , значит она параллельна и самой плоскости b (признак параллельности прямой и плоскости). Прямая а 2 параллельна прямой b 2 , значит она параллельна и самой плоскости b (признак параллельности прямой и плоскости). Прямая с принадлежит плоскости a , значит хотя бы одна из прямых а 1 или а 2 пересекает прямую с, то есть имеет с ней общую точку. Но прямая с также принадлежит и плоскости b , значит, пересекая прямую с, прямая а 1 или а 2 пересекает плоскость b , чего быть не может, так как прямые а 1 и а 2 параллельны плоскости b . Из этого следует, что плоскости a и b не пересекаются, то есть они параллельны.

Теорема 1 . Если две параллельные плоскости пересекаются третей, то прямые пересечения параллельны.
Доказательство. Пусть a и b - параллельные плоскости, а g - плоскость, пересекающая их. Плоскость a пересеклась с плоскостью g по прямой а. Плоскость b пересеклась с плоскостью g по прямой b . Линии пересечения а и b лежатв одной плоскости g и потому могут быть либо пересекающимися, либо параллельными прямыми. Но, принадлежа двум параллельным плоскостям, они не могут иметь общих точек. Следовательно, они параллельны.

Теорема 2. Отрезки параллельных прямых, заключенных между двумя параллельными плоскостями, равны.
Доказательство. Пусть a и b - параллельные плоскости, а а и b – параллельные прямые, пересекающие их. Через прямые а и b проведем плоскость g (эти прямые параллельны, значит определяют плоскость, причем только одну). Плоскость a пересеклась с плоскостью g по прямой АВ. Плоскость b пересеклась с плоскостью g по прямой СД.По предыдущей теореме прямая с параллельна прямой d . Прямые а, b , АВ и СД принадлежат плоскости g .Четырехугольник, ограниченный этими прямыми,есть параллелограмм (у него противоположные стороны параллельны). А раз это параллелограмм, то противоположные стороны у него равны, то есть АД = ВС