Патологические клетки. Ультраструктурная патология клетки

Патология клетки

Клетка – элементарная живая система, обладающая способностью к обмену с окружающей средой. Строение клеток организма человека обеспе-чивает выполнение ими специализированной функции и «сохранение себя», т. е. поддержание клеточного пула. Органоиды клетки, обладая определенными морфологическими особенностями, обеспечивают основные проявления жизнедеятельности клетки. С ними связаны дыхание и энергетические запасы (митохондрии), синтез белков (рибосомы, гранулярная цитоплазматическая сеть), накопление и транспорт липидов и гликогена, детоксикационная функция (гладкая цитоплазматическая сеть), синтез продуктов и их секреция (пластинчатый комплекс), внутриклеточное пищеварение и защитная функция (лизосомы). Деятельность ультраструктур клетки строго координирована, причем координация в выработке специфического продукта клеткой подчинена закону «внутриклеточного конвейера». По принципу ауторегуляции он осуществляет взаимосвязь между структурными компонентами клетки и протекающими в ней процессами обмена.

Функции органоидов не строго детерминированы, так как они могут участвовать в различных внутриклеточных процессах. Более специализированы метаплазматические образования клетки, выполняющие частные функции: тонофибриллы, выполняющие опорную функцию клетки; миофибриллы, осуществляющие сокращение клетки и способствующие ее движению; микроворсинки, щеточная каемка, участвующие в процессах всасывания; десмосомы, обеспечивающие клеточные контакты, и т. д. Однако ни одна функция клетки не является результатом деятельности одного органоида или одного метаплазматического образования. Каждое функциональное проявление клетки – это результат совместной работы всех взаимосвязанных компонентов. Понятно поэтому, что структурные изменения клетки, отражающие нарушения ее функции, не могут быть поняты без учета возможных изменений каждой из ее двух основных частей – ядра и цитоплазмы, ее органелл, метаплазматических образований и включений. От нарушений элементарных структур клетки и их функций к патологии клетки как элементарной саморегулирующейся живой системе и к патологии клеточных коопераций, объединенных конечной функцией,- таков путь познания патологии клетки – структурной основы патологии человека.

Поэтому патология клетки – понятие неоднозначное. Во-первых, это патология специализированных ультраструктур клетки, она представлена не только достаточно стереотипными изменениями той или иной ультраструктуры в ответ на различные воздействия, но и настолько специфичными изменениями ультраструктур, что можно говорить о хромосомных болезнях и «болезнях» рецепторов, лизосомных, митохондриальных, пероксисомных и других «болезнях» клетки. Во-вторых, патология клетки – это изменения ее компонентов и ультраструктур в причинно-следственных связях. При этом речь идет о выявлении общих закономерностей повреждения клетки и ее реакции на повреждение. Сюда могут быть отнесены: рецепция патогенной информации клеткой и реакция на повреждение, нарушения проницаемости клеточных мембран и циркуляции внутриклеточной жидкости; нарушения метаболизма клетки, смерть клетки (некроз), клеточная дисплазия и метаплазия, гипертрофия и атрофия, патология движения клетки, ее ядра и генетического аппарата и др.

Патология клеточного ядра

Морфологически она проявляется в изменении структуры, размеров, формы и количества ядер и ядрышек, в появлении разнообразных ядерных включений и изменений ядерной оболочки. Особую форму ядерной патологии представляет патология митоза; с патологией хромосом ядра связано развитие хромосомных синдромов и хромосомных болезней.

Структура и размеры ядер

Структура и размеры ядра (речь идет об интерфазном, интермитозном, ядре) зависят в первую очередь от плоидности, в частности от содержания в ядре ДНК, и от функционального состояния ядра. Тетраплоидные ядра имеют диаметр больше, чем диплоидные, октоплоидные – больше, чем тетраплоидные.

Большая часть клеток содержит диплоидные ядра. В пролиферирующих клетках в период синтеза ДНК (S-фаза) содержание ДНК в ядре удваивается, в постмитотический период, напротив, снижается. Если после синтеза ДНК в диплоидной клетке не происходит нормального митоза, то появляются тетраплоидные ядра. Возникает полиплоидия – кратное увеличение числа наборов хромосом в ядрах клеток, или состояние плоидности от тетраплоидии и выше.

Полиплоидные клетки выявляют различными способами: по размеру ядра, по увеличенному количеству ДНК в интерфазном ядре или по увеличению числа хромосом в митотической клетке. Они встречаются в нормально функционирующих тканях человека. Увеличение числа полиплоидных ядер во многих органах отмечается в старости. Особенно ярко полиплоидия представлена при репаративной регенерации (печень), компенсаторной (регенерационной) гипертрофии (миокард), при опухолевом росте.

Другой вид изменений структуры и размеров ядра клетки встречается при анеуплоидии, под которой понимают изменения в виде неполного набора хромо-сом. Анеуплоидия связана с хромосомными мутациями. Ее проявления (гипертетраплоидные, псевдоплоидные, «приблизительно» диплоидные или триплоидные ядра) часто обнаруживаются в злокачественных опухолях.

Размеры ядер и ядерных структур независимо от плоидии определяются в значительной мере функциональным состоянием клетки. В связи с этим следует помнить, что процессы, постоянно совершающиеся в интерфазном ядре, разнонаправленны: во-первых, это репликация генетического материала в S-нериоде («полуконсервативный» синтез ДНК); во-вторых, образование РНК в процессе транскрипции, транспортировка РНК из ядра в цитоплазму через ядерные поры для осуществления специфической функции клетки и для репликации ДНК.

Функциональное состояние ядра находит отражение в характере и распределении его хроматина. В наружных отделах диплоидных ядер нормальных тканей находят конденсированный (компактный) хроматин – гетерохроматин, в остальных ее отделах – неконденсированный (рыхлый) хроматин – эухроматин. Гетеро- и эухроматин отражают различные состояния активности ядра; первый из них считается «малоактивным» или «неактивным», второй – «достаточно активным». Поскольку ядро может переходить из состояния относительно функционального покоя в состояние высокой функциональной активности и обратно, морфологическая картина распределения хроматина, представленная гетеро- и эухроматином, не может считаться статичной. Возможна «гетерохроматинизация» или «эухроматинизация» ядер, механизмы которой изучены недостаточно. Неоднозначна и трактовка характера и распределения хроматина в ядре.

Например, маргинация хроматина, т. е. расположение его под ядерной оболочкой, трактуется и как признак активности ядра, и как проявление его повреждения. Однако конденсация эухроматиновых структур (гиперхроматоз стенки ядра), отражающая инактивацию активных участков транскрипции, рассматривается как патологическое явление, как предвестник гибели клетки. К патологическим изменениям ядра относят также его дисфункциональное (токсическое) набухание, встречающееся при различных повреждениях клетки. При этом происходит изменение коллоидно-осмотического состояния ядра и цитоплазмы вследствие торможения транспорта веществ через оболочку клетки.

Форма ядер и их количество

Изменения формы ядра – существенный диагностический признак: деформация ядер цитоплазматическими включениями при дистрофических процессах, полиморфизм ядер при воспалении (гранулематоз) и опухолевом росте (клеточный атипизм).

Форма ядра может меняться также в связи с образованием множественных выпячиваний ядра в цитоплазму (рис. 3), которое обусловлено увеличением ядерной поверхности и свидетельствует о синтетической активности ядра в отношении нуклеиновых кислот и белка.

Изменения количества ядер в клетке могут быть представлены многоядерностью, появлением «спутника ядра» и безъядерностью. Многоядерность возможна при слиянии клеток. Таковы, например, гигантские многоядерные клетки инородных тел и Пирогова – Лангханса, образующиеся при слиянии эпителиоидных клеток (см. рис. 72). Но возможно образование многоядерных клеток и при нарушениях митоза – деление ядра без последующего деления цитоплазмы, что наблюдается после облучения или введения цитостатиков, а также при злокачественном росте.

«Спутниками ядра», кариомерами (маленькими ядрами), называют мелкие подобные ядру образования с соответствующей структурой и собственной оболочкой, которые расположены в цитоплазме около неизмененного ядра. Причиной их образования считают хромосомные мутации. Таковы кариомеры в клетках злокачественной опухоли при наличии большого числа фигур патологических митозов.

Безъядерность в отношении функциональной оценки клетки неоднозначна. Известны безъядерные клеточные структуры, которые являются вполне жизнеспособными (эритроциты, тромбоциты). При патологических состояниях можно наблюдать жизнеспособность частей цитоплазмы, отделенных от клетки. Но безъядерность может свидетельствовать и о гибели ядра, которая проявляется кариопикнозом, кариорексисом и кариолизисом (см. Некроз).

Структура и размеры ядрышек

Изменения ядрышек имеют существенное значение в морфофункциональной оценке состояния клетки, так как с ядрышками связаны процессы транскрипции и трансформации рибосомальной РНК (р-РНК). Размеры и структура ядрышек в большинстве случаев коррелируют с объемом клеточного белкового синтеза, выявляемого биохимическими методами. Размеры ядрышек зависят также от функции и типа клеток.

Увеличение размеров и количества ядрышек свидетельствует о повышении их функциональной активности. Вновь образованная в ядрышке рибосомальная РНК транспортируется в цитоплазму и, вероятно, через поры внутренней ядерной мембраны. Интенсивный синтез белка в таких случаях подтверждается увеличением количества рибосом эндоплазматической сети.

Гипергранулированные ядрышки с преобладанием гранул над фибриллярной субстанцией могут отражать различное функциональное состояние как ядрышек, так и клетки. Наличие таких ядрышек с хорошо выраженной лакунарной системой и резкой базофилией цитоплазмы свидетельствует как о повышенном синтезе р-РНК, так и о трансмиссии. Такие «гиперфункциональные ядрышки» встречаются в молодых плазматических клетках, активных фибробластах, гепатоцитах, во многих опухолевых клетках. Те же гипергранулированные ядрышки со слабовыраженной базофилией цитоплазмы могут отражать нарушение трансмиссии (транспортировки гранул) при продолжающемся синтезе р-РНК. Они обнаруживаются в опухолевых клетках, отличающихся большим ядром и незначительной цитоплазматической базофилией.

Разрыхление (диссоциация) ядрышек, отражающее их гипогрануляцию, может быть следствием «извержения» р-РНК в цитоплазму или торможения ядрышковой транскрипции. Дезорганизация (сегрегация) ядрышек отражает, как правило, полное и быстрое прекращение ядрышковой транскрипции: ядро уменьшается в размерах, наблюдается выраженная конденсация ядрышкового хроматина, происходит разделение гранул и протеиновых нитей. Эти изменения встречаются при энергетическом дефиците клетки.

Ядерные включения

Ядерные включения делят на три группы:

1. ядерные цитоплазматические

2. истинные ядерные

3. ядерные вирусобусловленные.

Ядерными цитоплазматическими включениями называют отграниченные оболочкой части цитоплазмы в ядре. Они могут содержать все составные части клетки (органеллы, пигмент, гликоген, капли жира и т. д.). Их появление в большинстве случаев связано с нарушением митотического деления.

Истинными ядерными включениями считают те, которые расположены внутри ядра (кариоплазмы) и соответствуют веществам, встречающимся в цитоплазме [белок, гликоген, липиды и т. д.]. В большинстве случаев эти вещества проникают из цитоплазмы в ядро через неповрежденные или поврежденные поры ядерной оболочки или через разрушенную ядерную оболочку. Возможно также проникновение этих веществ в ядро при митозе. Таковы, например, включения гликогена в ядрах печени при сахарном диабете («ядерный гликоген», «дырчатые, пустые, ядра»).

Вирусобусловленные ядерные включения (так называемые тельца ядерных включений) неоднозначны. Во-первых, это ядерные включения в кариоплазме кристаллической решетки вируса, во-вторых, включения белковых частиц, возникающих при внутриядерном размножении вируса; в-третьих, ядерные включения как проявление реакции на поражение вирусом цитоплазмы («реактивные включения»).

Ядерная оболочка

Ядерная оболочка выполняет ряд функций, нарушения которых могут служить основой для развития патологии клетки.

О роли ядерной оболочки в поддержании формы и размера ядра свидетельствует образование внутриядерных трубчатых систем, отходящих от внутренней ядерной мембраны, включений в перинуклеарной зоне [гипертрофия миокарда, легочный фиброз, системный васкулит, саркоидоз, опухоли печени, дерматомиозит].

О ядерной оболочке как месте прикрепления ДНК для облегчения репликации и транскрипции свидетельствует тот факт, что в ядерной оболочке имеются структуры, модулированные хроматином и в свою очередь ответственные за ориентацию и структуру хроматина. Показано, что функциональная активность ДНК связана с ее распределением при делении клетки и со степенью конденсации в интерфазе, причем повреждение оболочки может вызывать изменения таких участков распределения и быть причиной патологических изменений клетки.

В пользу функции ядерной оболочки как физического барьера и модулятора нуклеоцитоплазматического обмена говорит установленная корреляция между изменениями структуры ядерной оболочки, модулем ее пор и выходом РНК в цитоплазму. Контроль ядерной оболочкой транспорта РНК в цитоплазму может оказывать существенное влияние на гомеостаз клетки при патологических состояниях. Участие ядерной оболочки в синтезе мембран не имеет достоверных доказательств, хотя и считают, что эта роль возможна, так как мембраны ядерной оболочки непосредственно переходят в эндоплазматическую сеть цитоплазмы. О возможном влиянии ферментов ядерной оболочки на функцию ядра свидетельствует наличие в ядерной оболочке различных ферментов детоксикации, а. также веществ, обеспечивающих «гормон,альное управление» (аденилатциклаза, рецепторы инсулина и др.).

Патология митоза

В жизненном цикле клетки митоз занимает особое место. С его помощью осуществляется репродукция клеток, а значит, и передача их наследственных свойств. Подготовка клеток к митозу складывается из ряда последовательных процессов: репродукции ДНК, удвоения массы клетки, синтеза белковых компонентов хромосом и митотического аппарата, удвоения клеточного центра, накопления энергии для цитотомии. В процессе митотического деления, как известно, различают 4 основные фазы: профазу, метафазу, анафазу и телофазу.

При патологии митоза может страдать любая из этих фаз. Руководствуясь этим, создана классификация патологии митоза [Алов И. А., 1972], согласно которой выделяются следующие типы патологии митоза:

I. Повреждение хромосом:

1. задержка клеток в профазе;

2. нарушение спирализации и деспирализации хромосом;

3. фрагментация хромосом;

4. образование мостов между хромосомами в анафазе;

5. раннее разъединение сестринских хроматид;

6. повреждение кинетохора.

II. Повреждение митотического аппарата:

1. задержка развития митоза в метафазе;

2. рассредоточение хромосом в метафазе;

3. трехгрупповая метафаза;

4. полая метафаза;

5. многополюсные митозы;

6. асимметричные митозы;

7. моноцентрические митозы;

8. К-митозы.

III. Нарушение цитотомии:

1. преждевременная цитотомия;

2. задержка цитотомии;

3. отсутствие цитотомии.

Патологию митоза могут вызвать различные воздействия на клетку: ультрафиолетовое и ионизирующее излучение, высокая температура, химические вещества, в том числе канцерогены и митотические яды и др. Велико количество патологических митозов при малигнизации тканей.

Хромосомные аберрации и хромосомные болезни

Хромосомные аберрации.

Под хромосомными аберрациями понимают изменения структуры хромосом, вызванные их разрывами, с последующим перераспределением, утратой или удвоением генетического материала. Они отражают различные виды аномалий хромосом. У человека среди наиболее часто встречающихся хромосомных аберраций, проявляющихся развитием глубокой патологии, выделяют аномалии, касающиеся числа и структуры хромосом. Нарушения числа хромосом могут быть выражены отсутствием одной из пары гомологичных хромосом (моносомия) или появлением добавочной, третьей, хромосомы (трисомия). Общее количество хромосом в кариотипе в этих случаях отличается от модального числа и равняется 45 или 47. Полиплоидия и анеуплоидия имеют меньшее значение для развития хромосомных синдромов. К нарушениям структуры хромосом при общем нормальном их числе в кариотипе относят различные типы их «поломки»: транслокадию (обмен сегментами между двумя негомологичными хромосомами), делецию (выпадение части хромосомы), фрагментацию, кольцевые хромосомы и т. д.

Хромосомные аберрации, нарушая баланс наследственных факторов, являются причиной многообразных отклонений в строении и жизнедеятельности организма, проявляющихся в так называемых хромосомных болезнях.

Хромосомные болезни.

Их делят на связанные с аномалиями соматических хромосом (аутосом) и с аномалиями половых хромосом (телец Барра). При этом учитывают характер хромосомной аномалии – нарушение числа отдельных хромосом, числа хромосомного набора или структуры хромосом. Эти критерии позволяют выделять полные или мозаичные клинические формы хромосомных болезней.

Хромосомные болезни, обусловленные нарушениями числа отдельных хромосом (трисомиями и моносомиями), могут касаться как аутосом, так и половых хромосом.

Моносомии аутосом (любые хромосомы, кроме Х- и Y-хромосом) несовместимы с жизнью. Трисомии аутосом достаточно распространены в патологии человека. Наиболее часто они представлены синдромами Патау (13-я пара хромосом) и Эдвардса (18-я пара), а также болезнью Дауна (21-я пара). Хромосомные синдромы при трисомиях других пар аутосом встречаются значительно реже. Моносомия половой Х-хромосомы (генотип ХО) лежит в основе синдрома Шерешевского-Тернера, трисомия половых хромосом (генотип XXY) – в основе синдрома Клейнфелтера. Нарушения числа хромосом в виде тетра- или триплоидии могут быть представлены как полными, так и мозаичными формами хромосомных болезней.

Нарушения структуры хромосом дают самую большую группу хромосомных синдромов (более 700 типов), которые, однако, могут быть связаны не только с хромосомными аномалиями, но и с другими этиологическими факторами.

Для всех форм хромосомных болезней характерна множественность проявлений в виде врожденных пороков развития, причем их формирование начинается на стадии гистогенеза и продолжается в органогенезе, что объясняет сходство клинических проявлений при различных формах хромосомных болезней.

Патология цитоплазмы

Изменения мембран и патология клетки

Клеточные мембраны, как известно, состоят из бислоя фосфолипидов, по обе стороны которого располагаются разнообразные мембранные белки. На внешней поверхности мембраны белковые молекулы несут полисахаридные компоненты (гликокаликс), которые содержат многочисленные поверхностные клеточные антигены. Они играют важную роль в формировании клеточных стыков.

Изменения клеточных мембран.

Среди них различают следующие [Авцын А. П., Шахламов В. А., 1979]: чрезмерное везикулообразование («минус-мембрана»); увеличение поверхности плазмолеммы клеток мембранами микропиноцитозных пузырьков («плюс-мембрана»); усиленный микроклазматоз и клазматоз («минус-мембрана»); образование цитоплазматических отростков из плазмолеммы клетки; образование пузырей на поверхности клетки; утолщение слоев мембраны; образование микропор; образование миелиноподобных структур из плазмолеммы и мембран органелл; слияние разнородных клеточных мембран; локальные разрушения мембран – «бреши» в плазмолемме; «штопка» локально разрушенной плазмолеммы мембранами микропиноцитозных везикул.

К патологии мембран клетки могут вести нарушения мембранного транспорта, изменения проницаемости мембран, изменения коммуникации клеток и их «узнавания», изменения подвижности мембран и формы клеток, нарушения синтеза и обмена мембран.

Нарушения мембранного транспорта.

Процесс мембранного транспорта предполагает перенос ионов и других субстратов против градиента концентрации. Транспорт может быть активным, тогда он требует АТФ и «подвижности» транспортных белков в мембране, или пассивным посредством различных диффузионных и обменных процессов. Активный транспорт – это также функция эпителиальных барьеров. Нарушения мембранного транспорта, ведущие к патологии клетки, хорошо прослежены при ишемии, которая приводит к первичным изменениям митохондрий. В митохондриях резко падает эффективность окислительного фосфорилирования, они набухают, вначале увеличивается проницаемость их внутренней мембраны, в дальнейшем повреждение становится тотальным и необратимым.

Ишемическое повреждение митохондрий приводит к полому натрий-калиевого АТФ-насоса, постепенному накапливанию в клетке натрия и потере ею калия. Нарушение натрий-калиевого обмена ведет к вытеснению кальция из митохондрий. В результате в цитоплазме повышается уровень ионизированного кальция и увеличивается связывание его с кальмодулином. С повышением содержания кальций-кальмодулиновых комплексов связан ряд изменений клетки: расхождение клеточных стыков, поглощение кальция митохондриями, изменение микротрубочек и микрофиламентов, активация фосфолипаз. Эндоплазматическая сеть накапливает воду и ионы, следствием чего является расширение ее канальцев и цистерн, развитие гидропической дистрофии. Усиление гликолиза сопровождается истощением гликогена, накоплением лактата и снижением клеточного рН. С этими изменениями связано нарушение структуры хроматина и уменьшение синтеза РНК. Необратимые ишемические повреждения клетки связаны с гидролизом мембран, особенно мембранных липидов, под действием фосфолипаз. Возникают и нарушения лизосомальных мембран с высвобождением гидролаз.

Изменения проницаемости мембран.

Контроль мембранной проницаемости предполагает поддержание структуры как фосфолипидного бислоя мембраны с необходимым обменом и ресинтезом, так и соответствующих белковых каналов. Важная роль в осуществлении этого контроля принадлежит гликокаликсу и взаимодействию мембранных белков с цитоскелетом, а также гормонам, взаимодействующим с мембранными рецепторами. Изменения проницаемости могут быть тяжелыми (необратимыми) или поверхностными. Наиболее изученной моделью изменения мембранной проницаемости является повреждение тяжелыми металлами (ртуть, уран). Тяжелые металлы, взаимодействуя с сульфгидрильными группами мембранных белков, изменяют их конформацию и резко увеличивают проницаемость мембраны для натрия, калия, хлора, кальция и магния, что приводит к быстрому набуханию клеток, распаду их цитоскелета. Подобные изменения мембран отмечаются при повреждении их комплементом («болезни гиперчувствительности»). В мембранах образуются бреши, что снижает их сопротивление и резко увеличивает проницаемость.

Изменения коммуникации клеток и их «узнавания». Коммуникабельность клеток и опознавание «своих» и «чужих» – необходимое свойство клеточного кооперирования. Клеточное «общение» и «узнавание» подразумевают прежде всего различия во внешних поверхностях плазматической мембраны н мембран внутриклеточных органелл. Особый интерес в этом отношении представляет гликокаликс мембраны с поверхностными антигенами – маркерами определенного типа клеток.

Изменения клеточного «общения» и «узнавания» встречаются при тех патологических процессах (воспаление, регенерация, опухолевый рост), при которых поверхностные антигены могут изменяться, причем различия могут касаться как типа антигена, так и его «доступности» со стороцы внеклеточного пространства. Показано, что при исчезновении характерных для данного типа клеток антигенов могут появляться «эмбриональные» и аномальные (например, карциноэмбриональный) антигены; изменения гликолипидов мембраны делают ее более доступной воздействию антител.

Коммуникабельность клеток определяется также состоянием клеточных стыков, которые могут повреждаться при различных патологических процессах и болезнях. В раковых клетках, например, найдена корреляция между изменениями клеточных стыков и нарушением межклеточных связей; в опухолях обнаружены аномальные клеточные соединения.

Изменения подвижности мембран и формы клеток. Различают два типа изменений, связанных с нарушением подвижности мембран: выпячивание мембраны наружу – экзотропия и внутрь цитоплазмы – эзотропия. При экзотропии мембрана, выпячивающаяся во внеклеточное пространство, образует окруженную мембраной цитоплазматическую структуру. При эзотропии появляется окруженная мембраной полость. Изменения формы клеток связаны не только с экзо- и эзотропией, но и с упрощением клеточной поверхности (потеря малых отростков подоцитов при нефротическом синдроме).

Нарушения синтеза и обмена мембран. Возможно усиление синтеза мембран (при воздействии ряда химических веществ на клетку) или его ослабление (снижение синтеза мембран щеточной каемки энтероцитов при угнетении мембранных ферментов). В равной мере возможно усиление обмена мембран (при стимуляции аутофагоцитоза) или его ослабление (при лизосомных болезнях).

Эндоплазматическая сеть

Изменения гранулярной эндоплазматической сети и рибосом

Функции гранулярной эндоплазматической сети и рибосом сопряжены достаточно жестко, поэтому морфологические проявления их нарушений касаются, как правило, обеих органелл.

Изменения гранулярной эндоплазматической сети и рибосом могут быть представлены гиперплазией и атрофией, упрощением структуры, дезагрегацией (диссоциацией) рибосом и полисом, образованием аномальных рибосомально-пластинчатых комплексов.

Гиперплазия гранулярной эндоплазматической сети и рибосом, т. е. увеличение их количества, светооптически проявляется повышенной базофилией цитоплазмы, которая отражает объемную плотность рибосом и является показателем интенсивности белкового синтеза в клетке. Электронно-микроскопически в таких случаях можно судить о сопряжении синтеза и экскреции белка или отсутствии такого сопряжения. В интенсивно секретирующих и экскретирующих белок клетках (например, в активных фибробластах) цистерны гранулярной эндоплазматической сети расширены и содержат мало электронно-плотного материала: отмечается гиперплазия как связанных с мембранами, так и свободных рибосом, образующих полисомы; пластинчатый комплекс (комплекс Гольджи), участвующий в экскреции синтезируемого белка, хорошо развит. В интенсивно секретирующих белок клетках с нарушенной его экскрецией в гиперплазированных расширенных цистернах эндоплазматической сети с обилием рибосом и полисом накапливается хлопьевидный электронно-плотный материал, иногда происходит его кристаллизация; комплекс Гольджи в таких случаях развит плохо.

В разделе научной медицины, именуемом «общая патология клетки», изучаются как морфологические изменения, происходящие в элементарных единицах строения организма, так и нарушения их функций. К этим нарушениям могут привести регрессивные и прогрессивные процессы. Говоря о формах гибели клеток, различают некроз и апоптоз. Обо всех этих понятиях, а также об основных механизмах повреждения клетки вы узнаете в данном материале.

Основные механизмы повреждения клетки

В основе патологии клетки лежит ее повреждение. Причины повреждения клеток, приводящие к их гибели, подразделяются на физические, химические и биологические. Под физическими понимаются травмы, высокая и низкая температура, радиация. Под химическими – воздействие кислот, щелочи, солей тяжелых металлов, цитотоксических веществ, например, цианидов, а также лекарственных средств при их передозировке.. К биологическим относятся патогенные микроорганизмы, а также факторы системы иммунитета.

Рассматривая характеристику понятия «повреждение» в разделе «патология клетки», особое внимание стоит уделить механизмам этого процесса.

Механизмов повреждения клетки достаточно много. Ниже описаны основные из них.

Расстройство энергетического обеспечения клетки бывает связано с нарушениями процессов окисления глюкозы, что, как известно, является основным источником энергии для «зарядки» (синтеза) главного клеточного «аккумулятора» - АТФ. Очевидно, что следствием недостатка энергии является угнетение большинства жизненных процессов клетки.

Повреждение мембран. Как известно, клеточные мембраны являются структурной основой, как клеточных органелл, так и клетки в целом, поэтому их повреждение неизбежно влечет нарушение клеточной анатомии и физиологии.

Дисбаланс воды и ионов приводит либо к сморщиванию, либо к набуханию клеток вследствие изменения соотношения осмотического давления внутри и вне клетки. Кроме того, процессы передачи сигнальных импульсов основаны на концентрации электролитов по обе стороны клеточной мембраны, что при нарушении ионного баланса приводит к расстройствам передачи нервных импульсов и дискоординации содружественной деятельности групп клеток в тканях и органах.

Повреждение генетического аппарата клеточного ядра приводит к нарушению процессов воспроизводства в клетке, следствием чего, например, может явиться превращение нормальной клетки в опухолевую.

Расстройства регуляции внутриклеточных процессов приводят как к расстройству процессов жизнедеятельности клетки как таковой, так и к нарушению выполнения клеткой своих функций в качестве структурной единицы тканей и органов макроорганизма.

Формы гибели клеток: некроз и апоптоз

Два основных механизма гибели клетки - это некроз и апоптоз.

Основные отличия некроза и апоптоза клетки следующие:

  • некроз происходит из-за внешних и внутренних - повреждающих факторов, апоптоз - обычно из-за естественных (как правило, внутренних) причин;
  • некроз - это гибель как отдельных клеток (группы клеток), так и участка ткани, апоптоз - смерть отдельных клеток;
  • механизм некроза клеток - это бессистемное, случайное поражение различных частей элементарных единиц строения организма и участков ткани, апоптоз - упорядоченный внутренний процесс;
  • при патологии клеток некроз окружающая ткань реагирует воспалением, при апоптозе воспаления не бывает.

Механизм гибели клеток некроз: причины и формы

Некроз - это гибель клетки организма, группы клеток или участка ткани под действием повреждающих факторов, интенсивность которых привела к тому, что изменения в клетке стали необратимыми и некомпенсируемыми. Некроз - это исключительно патологическое явление, которое возникает вследствие заболеваний и травм, т. е. биологически нецелесообразно. Некроз обычно приводит к возникновению другого типового патологического процесса - воспалению. Некроз - омертвение, гибель клеток и тканей в живом организме.

Говоря о некрозе как механизме гибели клетки, соответствии с различными причинами различают:

  • травматический некроз (происходит в связи с прямым повреждающим действием высокой или низкой температуры, кислот, щелочей и т. п. факторов на клетки и ткани);
  • токсический некроз (причиной гибели клеток в этом случае является воздействие на ткани каких-либо - чаше бактериальных - токсинов);
  • трофоневротический некроз (возникает в результате нарушения иннервации определенного участка ткани, что ведет к сосудистым нарушениям и необратимым дистрофическим изменениям);
  • аллергический некроз (является следствием аллергической реакции немедленного типа; чаше всего он развивается по типу фибриноидного некроза;
  • сосудистый некроз (возникает при нарушении кровообращения определенной области вследствие тромбоза, эмболии, сдавления сосуда, он носит название ишемического некроза - инфаркта).

Различают следующие формы некроза:

1. коагуляционный (сухой) некроз (в основе его лежат процессы денатурации тканевых белков и обезвоживание);

2. колликвационный некроз - влажный некроз, характеризуется размягчением и расплавлением погибших тканей;

3. гангрена - некроз тканей , соприкасающихся с внешней средой (различают сухую гангрену, при которой мертвая ткань высыхает, сморщивается, мумифицируется, и влажную гангрену, при которой омертвевшая ткань подвергается разложению гнилостными бактериями; разновидностью гангрены являются трофоневротические некрозы, возникающие у ослабленных лежачих тяжелобольных пролежни на участках поверхности тела в области костных выступов - крестца, лопаток, пяток, локтевых отростков, затылка);

4. секвестр (участок мертвой ткани, свободно располагающейся среди живой - чаще всего это костные секвестры при хроническом остеомиелите);

Исходы некроза. Благоприятным вариантом исхода является возникновение пограничного воспаления с четко обозначенной границей некроза и здоровой ткани - демаркационной линией. Позднее некротические массы постепенно рассасываются; они также могут замешаться соединительной тканью, в этом случае говорят об организации. Если некротический участок обрастает соединительнотканной капсулой, то данный процесс носит название инкапсуляции. В организовавшийся очаг могут выпадать соли кальция (обызвествление, или петрификация); а в некоторых случаях здесь образуется участок костной ткани (оссификация).

Неблагоприятным вариантом исхода некроза является присоединение инфекции и гнойное расплавление некротического участка, что сопровождается тяжелыми осложнениями.

Процесс гибели клеток организма апоптоз

От некроза необходимо отличать процесс гибели клеток апоптоз.

Апоптоз - это запрограммированная смерть клетки. Как правило, апоптоз является естественным биологическим процессом, однако в некоторых случаях апоптоз включается вследствие нарушения нормальных физиологических процессов, т. е. при патологии. В результате апоптоза клетка разделяется на отдельные покрытые клеточной мембраной фрагменты - апоптотические тельца, которые поглощаются макрофагами.

Механизмы апоптоза включаются еще во время внутриутробного периода, когда у эмбриона, например, редуцируется хвост. После рождения механизмы апоптоза в частности отвечают за обновление клеток эндометрия, эпителия кожи и кишечника, клеток крови. Собственные клетки организма умерщвляются благодаря механизму апоптоза, если они заражены вирусами или приобрели характер опухолевых.

Процесс гибели клетки апоптоз состоит из:

  • сигнальной фазы, во время которой включается его механизм под воздействием различных факторов на специальные клеточные рецепторы;
  • эффекторной фазы, во время которой активизируются специальные белки, разрушающие клетку;
  • деградационной фазы (фазы экзекуции, или деструкции), во время которой и происходит вышеупомянутая фрагментация клетки под действием белков-разрушителей. Запуск апоптоза не является необратимым, так как у клетки имеются рецепторы, активизация которых может подавить уже запущенный процесс апоптоза.

В старости у большинства клеток отмечается тенденция к повышению чувствительности к запуску апоптоза (это справедливо, правда, в отношении только определенных клеток - нервной ткани, клеток печени и сердца, хрящевой ткани, Т-лимфоцитов и т. д.).

Нарушения в ядре клетки . Они приводят к патологии хранения генетической информации в ДНК и передачи ее при делении клеток, генетического контроля клеточных процессов.

В связи с этим механизмы нарушений в ядре были рассмотрены при описании нарушений функций генетического аппарата и механизмов его реализации.

Восстановление клеток после повреждения, особенно в тканях, где основные популяции клеток не способны к делению (нервная, сердечная мышечная ткани), в зонах опухолевого роста, при патологической гипертрофии и гиперфункции органов может происходить путем образования полиплоидных клеток с многократным увеличением числа хромосом и размеров клеток. Такая полиплоидия сопровождается повышением функциональной активности клетки, однако это может привести к снижению ее резервных возможностей. Например, если гипертрофированный кардиомиоцит достигает очень больших размеров, то его трофическое обеспечение значительно затрудняется и приводит к гибели клетки. При ускорении синтеза белка и нуклеиновых кислот при гиперфункции и регенерации образуются множественные выпячивания и впячивания в связи с увеличением поверхности ядра. Эти явления сопровождаются увеличением количества хроматина и ядерных пор, возрастанием числа и размеров ядрышек.

Выделяют следующие патологии ядерного аппарата.

Уменьшение генетического материала наблюдают в злокачественных опухолевых клетках. Это приводит к уменьшению размеров таких клеток и изменению их свойств. Такие клетки по своим свойствам резко отличаются от нормальных клеток организма, имеют иные антигенные свойства, значительно изменяется их способность к дифференцировке.

Атипичные митозы (в том числе так называемый дегенеративный амитоз) сопровождаются анэуплоидией, хромосомными аберрациями. Это резко изменяет функциональные особенности клетки. В результате цитокинеза формируются две клетки со случайно распределенными наборами хромосом и содержимым цитоплазмы. Эти клетки являются атипичными, нередко опухолевыми. Подобные нарушения характерны для злокачественного опухолевого роста. Встречается неполный амитоз, когда цитотомии не происходит, и формируется многоядерная клетка - такой амитоз в патологии иногда называют дегенеративным.

Патология синтеза субъединиц рибосом и тРНК в ядрышке сопровождается нарушением синтетических процессов в клетке. В эту же группу включают нарушения экспрессии генов, транскрипции и сплайсинга, переноса генетической информации в составе иРНК из ядра в цитоплазму. Все эти изменения связаны с фенотипической изменчивостью.

Изменения генома и/или механизмов его реализации сопровождаются патологией строения ядер (полиморфизм, деформация, формирование инвагинаций цитоплазмы вплоть до включений цитоплазмы в ядре, выпячивания кариоплазмы в цитоплазму).

При нарушениях ядро набухает с вакуолизацией (расширением) перинуклеарной цистерны или сморщивается. Набухшие ядра становятся более светлыми, изменяется ядерно-цитоплазматическое отношение. Это часто предшествует разрушению ядерной оболочки со слиянием содержимого кариоплазмы и цитоплазмы (кариолизис). Кариолизис предшествует паранекрозу и/или некрозу, с последующим самоперевариванием клетки (аутолизом). Увеличение (конденсация) или уменьшение количества хроматина, разрыв ядра могут быть вызваны гипоксией, ионизирующим излучением и др. Данные нарушения сопровождаются снижением синтеза нуклеиновых кислот и белка.

При сморщивании ядро (кариопикноз) уменьшается в размерах, в нем накапливается гетерохроматин, что приводит к усилению окрашивания кариоплазмы (гиперхроматоз). Ядрышки уплотняются, уменьшаются в размерах, нередко распадаются. Синтез РНК и субъединиц рибосом в таком ядре резко снижается. Прогрессируя, эти изменения приводят к сегментации ядра с последующим его распадом на глыбки (кариорексис), которые затем разрушаются. Эти последствия гибельные для клетки. Такая клетка распадается на части, которые подвергаются фагоцитозу макрофагами.

При гибели клетки хроматин коагулируется и собирается в грубые конгломераты.

При подавлении синтеза рРНК ядрышко сжимается и фрагментируется, утрачивает гранулы. В ядрышке появляются «полости» с низкой плотностью.

Нарушение созревания рибосом (ингибиция процессинга рРНК) вызывает увеличение размеров ядрышек, но в них отсутствуют зрелые субъединицы рибосом.

Изменения в цитозоле (гиалоплазме) . Для них характерны патологии циклоза, обеспечения взаимодействия клеточных структур друг с другом, анаэробного гликолиза, обмена углеводов, белков, липидов и других веществ, депонирования гликогена, жиров, пигментов.

Гипоксия, протеолитические процессы, аутолиз, преобладание анаэробно-гликолитических процессов могут приводить к накоплению низкомолекулярных органических соединений, изменять онкотическое давление. Повышение онкотического давления вызывает диффузию воды в гиалоплазму и набухание клетки. Подобные же явления могуг сопровождать гипоосмолярную гипергидрию. При резком набухании разрывается цитомембрана и содержимое гиалоплазмы сливается с межклеточным веществом.

Повышенная проницаемость цитомембраны при различных патологических воздействиях вызывает выход ионов калия из клетки и поступление в нее ионов натрия, хлора и кальция. Повышается осмотическое давление гиалоплазмы. В нее поступает вода, и клетка набухает.

Обезвоживание, гиперосмолярность межклеточного вещества приводят к выходу воды из гиалоплазмы и сморщиванию клетки. Потеря клеткой воды (дегидратация) понижает функциональную активность, замедляет циклоз, происходит накопление продуктов жизнедеятельности (аутоинтоксикация).

При патологии изменяется кислотно-щелочное равновесие в матриксе клетки. Недоокисленные продукты, накапливающиеся в матриксе, вызывают метаболический ацидоз, повышают проницаемость мембран. Нарушение проницаемости активизирует протеолитические ферменты, что вызывает внутриклеточное самопереваривание - аутолиз.

Патофизиология митохондрий . Она связана с нарушением аэробного фосфорилирования и энергетического обеспечения. Изменения в митохондриях возникают при гипоксии, действии токсинов, блокирующих цепи окислительного фосфорилирования.

Нарушение функций митохондрий наблюдают при гипертиреозе за счет трийодтиронина, рецепторы к которому имеются в органелле. α-Динитрофенол, глюкокортикоиды, инсулин, интерлейкин-1, избыток кальция и тиреоидных гормонов вызывают набухание митохондрий и разобщение цепей окислительного фосфорилирования. В результате клетка не может выработать достаточного количества АТФ, и энергозависимые процессы затухают. Эти функциональные нарушения сопровождаются структурными перестройками в виде набухания митохондрий, изменения структуры их крист и плотности матрикса.

При нарушении обмена веществ, гипоксии, интоксикации митохондрии набухают, их матрикс просветляется и вакуолизируется. Все это приводит к снижению образования АТФ и эффективности окислительного фосфорилирования.

Разобщение цепей окислительного фосфорилирования происходит при лихорадке в момент повышения температуры и при гипотермии как механизм, обеспечивающий повышенную теплопродукцию.

Кроме набухания можно наблюдать конденсацию и фрагментацию митохондрий. Формируются органические (белковые, липидные) и минеральные (нерастворимые соли кальция) включения. Все это также снижает эффективность синтеза АТФ за счет полной или частичной блокады окислительных процессов.

Иногда встречаются гигантские митохондрии с соответствующей гипертрофией крист. Эти нарушения имеют место в случае гипертрофии органелл или за счет их слияния. Изменяются также число и форма крист внутренней мембраны. Увеличение числа крист обычно указывает на повышение активности митохондрий. Иногда трансформируется форма крист и появляются не только трабекулярные, но и мультивезикулярные (трубчатые). Динамике подвергается и направлен на крист. Может встречаться продольная и поперечная направленность. Фрагментация крист, нарушение их правильного расположения появляются при гипоксии.

При гиповитаминозах, алкогольной интоксикации, в опухолевых клетках изменяется форма митохондрий и крист.

Количественные изменения содержания митохондрий в клетке могут быть как в виде увеличения, так и уменьшения. Увеличение числа митохондрий в клетке обычно возникает при усилении ее функциональной активности (гиперфункции и гипертрофии), в процессе восстановления нарушенных функций, при апоптозе. Уменьшение абсолютного содержания митохондрий в клетке указывает на снижение ее функциональной активности, деструктивные атрофические процессы.

Высокой динамичностью отличается распределение митохондрий. Так, при различных патологических ситуациях они локализуются вокруг ядра или на одном из полюсов клетки. В результате математического моделирования показано, что эти изменения в числе прочих могут быть обусловлены динамикой диффузии кислорода и глюкозы.

Часть антибиотиков специфически нарушает белковый синтез на рибосомах митохондрий, например левомицетин, эритромицин. Если в выделенные митохондрии добавить подобные антибиотики, то нарушаются синтетические процессы и органеллы гибнут. Подобные явления в целом организме не наблюдаются, так как указанные антибиотики не накапливаются внутри эукариотической клетки, плохо проникая через ее мембрану.

Патологические процессы в рибосомах . Они сопровождаются нарушением трансляции с образованием полипептидных цепочек в цитозоле, гр. ЭПС и митохондриях.

Эти нарушения возникают при влиянии некоторых патологических факторов, например противоопухолевых препаратов, блокирующих синтез белков у эукариот.

Изменения рибонуклеопротеидных комплексов рибосом, а также рецепторов к ним могут сопровождаться снижением связывания рибосом и полисом с гр. ЭПС в ходе образования секреторных белков. Такие вновь образованные полипептидные цепочки быстро разрушаются в матриксе цитоплазмы.

Патология ядрышкового аппарата приводит к снижению содержания рибосом в цитоплазме и подавлению пластических процессов в организме.

Некоторые особенности имеет патология митохондриальных рибосом. Их нарушения вызывают препараты, блокирующие белковый синтез у бактерий, например левомицетин, эритромицин, которые не влияют на активность цитоплазматических рибосом.

Нарушения в ЭПС . Изменения в гр. и глад. ЭПС по проявлениям близки и сводятся к ниже перечисленным.

Расширение цистерн ЭПС с вакуолизацией цитоплазмы клеток . Наблюдается при повышении активности ЭПС с накоплением в ее структуре синтезированных веществ, при нарушении транспорта веществ в комплекс Гольджи, накоплении патологических веществ. При избыточном накоплении нормальных и патологических веществ развивается дистрофия клетки.

Фрагментация ЭПС , накопление в канальцах обрывков мембран, остатков клеточных органелл характерны для большого числа повреждений клетки, в том числе некроза и паранекроза, «шоковой» клетки, и сопровождаются значительным снижением синтетической активности ЭПС.

Гипертрофия ЭПС наблюдается при гиперфункции секреторных клеток, возникающей от избыточных стимулирующих воздействий на клетку. Это дисфункции вегетативной нервной системы, дисгормонозы, раздражающие воздействия на секреторные клетки, опухолевое их перерождение.

Гипотрофия ЭПС сопровождается снижением секреторной активности клеток и скорости замещения мембранных комплексов. Это характерно для гипотрофии, атрофии, апоптоза и может являться следствием подавления вегетативного нервного

контроля, гормонального блокирования секреции, гипоксии и голодания.

Упрощение структуры и изменение распределения ЭПС возникают при гипотрофии и атрофии в зонах хронических воспалительных процессов, дедифференцировке клеток в опухолях.

Нарушения в гранулярной ЭПС проявляются блокадой, избыточным синтезом полипептидов либо синтезом измененных полипептидных цепочек (мембранных, лизосомальных, секреторных).

Гипертрофия гр. ЭПС нередко сопровождается гиперсекрецией того или иного вещества. Это связано с чрезмерной внешней активацией специфической активности клетки при дисгормональных нарушениях и патологии нервной регуляции.

Патология гр. ЭПС с блокадой синтетических и/или транспортных процессов в клетке сопровождается вакуолизацией, фрагментацией органеллы, нарушением связи с рибосомами и др. Это приводит к дистрофиям, нарушению ресинтетических процессов в клетке.

Гипоксия, различного рода интоксикации изменяют форму цистерн и их размеры. Наблюдается фрагментация цистерн, изменяется их распределение в клетке. На цистернах исчезают рибосомы или они распределяются неравномерно. Эти явления значительно снижают эффективность синтетической функции клетки, в первую очередь восстановление мембранных структур, синтез секрета, восполнение лизосомальных ферментов. Это ведет к угнетению пластических (анаболических) процессов в клетке.

Патологические изменения могут возникать в функционировании свободных и связанных рибосом, что обусловлено несколькими механизмами. Свободные и связанные с гр. ЭПС рибосомы не связываются с иРНК, блокируются соединения с тРНК, не объединяются субъединицы рибосом, необходимые для процессов трансляции.

Дезагрегация рибосом и полисом на гр. ЭПС, их исчезновение вызывают нарушения синтеза секреторных и лизосомальных белков, белков клеточной мембраны.

Для гиповитаминоза С характерно неравномерное распределение рибосом на мембранах, что обусловлено нарушением рецепторной функции мембран гр. ЭПС и вызывает снижение синтетической активности клетки.

Нарушения в гладкой ЭПС выражаются патологией регенерации клеточных мембран, синтеза гликогена, липидов, стероидных гормонов, депонирования и высвобождения Са 2+ , детоксикации экзогенных и эндогенных веществ. Эти нарушения проявляются снижением обезвреживающей функции печеночных клеток, а также уменьшением секреторной активности экзокринных и эндокринных желез, уменьшением интенсивности сокращений в мышечной ткани. Может снижаться двигательная активность фагоцитов, нарушаться передача возбуждения в нейронах и т. д.

Нарушения в комплексе Гольджи . Это патологии модификации, сортировки и упаковки белков, которые или секретируются клеткой, или поступают в плазмолемму, изменения в лизосомах, нарушение образования полисахаридов, гликопротеинов, липопротеинов, гликолипидов.

Гиперфункция комплекса Гольджи с его гипертрофией вызывает избыточную секрецию и/или накопление секреторных продуктов внутри клетки. Гипертрофия с гиперфункцией комплекса Гольджи в секреторных клетках наблюдается при избыточной стимуляции секреции вегетативными нервными окончаниями, гиперфункции гормонов, стимулирующих секрецию. Гиперфункция комплекса Гольджи сопровождается набуханием цистерн, увеличением их числа и размеров. Подобным же образом изменяются вакуоли и пузырьки, участвующие в его формировании.

Гипофункция комплекса Гольджи нарушает репарацию мембранных комплексов клетки, снижает ее секреторную активность и переваривающую способность. Гипофункция возникает при гипотрофии и атрофии, денервации, гипофункции гормонов, стимулирующих секреторную активность клеток, и/или при повышенной активности гормонов, блокирующих секрецию, нарушениях питания. При вирусных инфекциях структуры комплекса Гольджи могут исчезнуть или их содержание резко уменьшается.

Парциальные нарушения функций комплекса Гольджи обусловлены врожденными или приобретенными ферментопатиями и сопровождаются блокадой созревания отдельных гликопротеиновых, липопротеиновых и других комплексов.

Патология лизосом . Она сопровождается активацией аутолиза при избыточной и дистрофией при недостаточной активности.

Повышение проницаемости мембран лизосом под действием гипоксии, СПОЛ, канцерогенных веществ и др. приводит к активизации переваривания с самоперевариванием клетки (аутолизом). Запускается аутолиз при гипоксии, кахексии (истощении) организма, травмах клетки, действии чрезмерно высокой или низкой температуры, кислот и щелочей, выраженной интоксикации, ионизирующих излучениях и др. Глюкокортикоиды, холестерин, противовоспалительные препараты поддерживают сохранность мембран, предотвращая самопереваривание.

Противоположное явление - недостаточное внутриклеточное переваривание - сопровождается накоплением в клетке продуктов неполного разрушения, что может приводить к дистрофии. Как вариант нарушения переваривания - невозможность разрушения патогенных микроорганизмов - нарушает защитные реакции организма. Уменьшение числа лизосом, снижение ферментативной активности встречаются при хронической гипоксии, избытке стероидных гормонов, некоторых инфекциях и нарушениях обмена веществ и др.

Патологию в лизосомах наблюдают при следующих явлениях: изменениях в самих лизосомах и реакции лизосом на нарушения в других клеточных компонентах. При генетических изменениях, вызывающих перестройку лизосомальных ферментов и снижающих их ферментативную активность, возникают «болезни накопления», при которых увеличивается количество остаточных телец и изменяются структуры вторичных митохондрий. Отравление клеток каротином при гипервитаминозе повышает проницаемость мембран клетки, в том числе мембран лизосом, лизосомальным ферментам становятся доступны клеточные субстраты, активируется аутолиз.

Нарушение функций пероксисом . Это снижает эффективность обезвреживания кислородных радикалов и активизирует перекисные процессы в клетке, приводит к накоплению недоокисленных продуктов и активизации свободнорадикальных перекисных процессов, что нарушает проницаемость мембран, вызывает мутации и аутолиз. Снижается содержание пероксисом при ионизирующем излучении и в опухолевых клетках.

Увеличение количества пероксисом встречается при патологических процессах и носит защитно-компенсаторный характер, например при лептоспирозе и вирусном гепатите.

Нарушения структуры и функций центриолей . Это нарушает деление, структурирование клетки вне деления, образование ресничек и жгутиков.

Нарушения структуры и функции центриолей, формирующих клеточный центр, тесно взаимосвязаны с процессами полимеризации и деполимеризации микротрубочек. В результате распада центриолей и разрушения центросферы изменяется распределение органелл в гиалоплазме. Комплекс Гольджи локализуется вблизи клеточного центра. При нарушениях в клеточном центре могут быть значительные изменения распределения транспортных процессов как в пределах компартментов комплекса, так и от него в направлении цитомембраны (регулируемая секреция) и в цитозоле (прелизосомы).

Под действием колхицина и его аналогов, разрушающих клеточный центр, блокируются процессы митоза и нормальное распределение генетического и цитоплазматического материала при делении.

Изменения элементов цитоскелета (микротрубочек, микрофиламентов, микротрабекул) . Они изменяют форму и подвижность клеток, нарушают распределение и перемещение компонентов клетки, транспорта веществ в клетку и из нее, возникает дезагрегация в межклеточных соединениях.

Патология полимеризации микротрубочек может привести к нарушению процессов перемещения секреторных пузырьков, лизосом, органелл в клетке, нарушению митоза, затруднению экзоцитоза секреторных включений, изменениям в формировании и подвижности ресничек и жгутиков. Например, изменение активности динеина блокирует движения ресничек дыхательных путей и половых органов, ведет к застою.

Полимеризация тесно связана с содержанием ионов кальция. Она может быть блокирована колхицином. Недостаток АТФ также вызывает снижение подвижности ресничек и жгутиков. Нарушение функции кинезиновых и динеиновых комплексов в нейротубулах (микротрубочках нейронов) сопровождается грубыми нарушениями в транспорте веществ вдоль аксона. Снижается регенерация поврежденных отростков нейронов.

Патология формирования тонких филаментов сопровождается повреждением микроворсинок и стереоцилий, ленточных десмосом. Снижается подвижность клеток, нарушаются процессы фагоцитоза и циклоза, возникает дискинезия выводящих путей экзокринных желез. Деполимеризация тонких микрофиламентов (миофиламентов) мышечной ткани характеризуется блокадой сокращений. Подобные явления наблюдают при невозможности взаимодействия тонких и толстых миофиламентов и микромиозиновых комплексов, например, когда нарушаются кальциевый обмен, образование, транспорт и использование АТФ, изменяется строение тропомиозинов и др.

Нарушения синтеза и распределения промежуточных филаментов сопровождаются деформациями клеток и ядер, значительно снижается механическая прочность клеток и их соединений. Снижение прочности адгезивных соединений связано с десмосомальными и полудесмосомальными контактами.

Кроме изменений в полимеризации самих микротрубочек, промежуточных филаментов и тонких микрофиламентов может возникнуть дезинтеграция их связи со структурными белками цитомембран.

Нарушения функций плазматической мембраны . Под действием патогенных факторов в течение длительного времени может повышаться ионная проницаемость клеточной мембраны. Нарушается функция калий-натриевых, кальций-магниевых и других насосов. В результате происходит перераспределение ионов внутри и вне клетки. Накапливаются ионы натрия, кальция и хлора и уменьшается количество калия в клетке. Процесс нередко сопровождается уменьшением количества АТФ либо блокированием АТФаз. Проникновение ионов Na + и Cl — вызывает повышение внутриклеточного давления и набухание вплоть до разрыва цитомембраны. Изменения проницаемости мембран характерны для многочисленных повреждений, в том числе гипоксии, действия животных и растительных ядов, ионизирующих излучений, блокаторов АТФаз и др.

Кроме повреждения транспорта ионов происходит снижение всасывания глюкозы (при сахарном диабете), отдельных аминокислот и др.

Наряду с блокадой активного транспорта при повреждениях нередко изменяются процессы эндоцитоза и экзоцитоза. Дисфункция эндоцитоза, не связанного с белками-рецепторами, обусловлена повреждением белков слияния. Это приводит к изменению транспортных процессов в эпителиальной ткани, в том числе в эндотелии кровеносных сосудов.

Микроэндоцитоз, опосредуемый через рецепторы, нарушается в связи с изменением рецепторного аппарата мембраны клетки. Это может быть также обусловлено нарушением образования вторых посредников, патологией прикрепления клатринов к внутренней поверхности мембраны клетки.

При фагоцитозе бактерий, крупных частей клетки и др. может нарушаться взаимодействие фагоцитируемой частицы с рецепторами на поверхности клетки, изменяются содержание кальция и полимеризация тонких микрофиламентов и микротрубочек.

Снижение спонтанной секреции вызывает повреждения комплекса Гольджи, что ведет к недостаточному восстановлению цитомембраны. Регулируемая секреция патологически меняется за счет дисфункции гормонального и нервного контроля, патологической деполяризации или гиперполяризации мембраны, избыточной или недостаточной активации клетки через вторые посредники, патологии микротрубочек и уровня внутриклеточного кальция. Изменения сопровождаются нарушением выведения секреторных продуктов, в том числе гормонов, ферментов, слизи, медиаторов при синаптической передаче в нервной ткани и т. д.

Одним из ведущих повреждающих механизмов клеточных мембран является каскад свободно-радикальных перекисных реакций липидов, в конечном итоге сопровождающийся накоплением амфифильных соединений с резким усилением проницаемости цитомембраны и активизацией аутолитических процессов.

При изменении рецепторного аппарата клетки повышается или снижается количество рецепторов к гормонам или другим биологически активным веществам, уменьшается аффинность (специфичность) рецепторов. Причины нарушений могут быть первичными (генетически обусловленными) или вторичными (приобретенными). Примерами причин вторичных нарушений служат аутоиммунный процесс с разрушением рецепторов антителами, компенсаторное уменьшение чувствительности к гормонам при повышении их активности, например увеличение содержания инсулина в сочетании со снижением чувствительности к нему при ожирении и инсулиннезависимом сахарном диабете.

Увеличение количества рецепторов наблюдают при денервации, например, в зонах, лишенных симпатического нервного контроля, повышается содержание рецепторов к адреналину и норадреналину. Уменьшение содержания рецепторов приводит к развитию заболеваний, связанных с относительной недостаточностью гормона, которые не корректируются введением даже повышенных доз этого биологически активного вещества (инсулиннезависимый сахарный диабет, карликовость).

Иногда наблюдаются изменения в передаче сигнала от рецепторов внутрь клетки. Возбуждение, вызванное сигналом, может передаваться в глубь клетки несколькими способами: при взаимодействии рецептора с интегральным G-белком, активирующим образование сигнальных молекул цитоплазмы (вторых посредников) - цАМФ, ионов кальция, цГМФ; во втором случае рецептор связан с тирозинкиназами, которые запускают Ras-каскад, в результате чего образуется инозитол-1,4,5-трифосфат, диацилглицерол. Вторые посредники влияют на цепь каталитических реакций, в том числе транскрипцию. Изменение активности вторых посредников и образующих их белков может привести к снижению или усилению влияния гормональных факторов.

Нарушение аффинности (сродства) рецепторов к молекулам адгезии и агрегации приводит к снижению прилипания клеток к себе подобным и/или межклеточным структурам. Нарушение «узнавания» рецептором гликокаликса родственных клеток сопровождается патологической подвижностью клеток с возможностью их миграции в организме. Такой способностью обладают злокачественные опухолевые клетки, что ведет к формированию метастазов и вызывает инфильтративный рост. В то же время снижение адгезивных свойств селектинов и интегринов лейкоцитов приводит к синдрому так называемых «ленивых» лейкоцитов, когда они не могут проникнуть из сосуда в зону воспаления.

Патология белков цитомембран, выполняющих опорно-каркасную функцию, нарушает форму клеток и их механическую прочность. Например, анемии с нарушением формы эритроцитов обусловлены повреждением связи опорных белков с микротрубочками и тонкими микрофиламентами.

Снижение активности белков-ферментов цитомембраны столбчатых энтероцитов резко затрудняет процессы пристеночного пищеварения в тонкой кишке. Повреждение белков-ферментов гликокаликса тироцитов блокирует образование гормонов щитовидной железой, а у фибробластов подавляет синтез коллагеновых и эластических волокон.

Нарушения образования главных комплексов гистосовместимости первого класса сопровождаются активизацией аутоиммунных процессов. Некоторые патогенные микроорганизмы выделяют фермент нейраминидазу, обнажающий антигенные структуры на мембранах клеток организма, что приводит к уничтожению таких клеток лейкоцитами. Изменяются главные комплексы гистосовместимости и при опухолевом перерождении клеток.

Нарушение функции механических контактов клетки (десмосом, полудесмоеом, ленточных десмосом) приводит к снижению прочности таких соединений, к разрывам контактов клеток с соседними структурами даже при незначительных механических воздействиях.

Патология щелевидных контактов нарушает единство физиологических реакций в тканях. Так, в гладкой и сердечной мышечной тканях подавляется проведение импульса, в эпителиальной ткани происходит десинхронизация процессов регенерации и секреторной активности клеток.

Структурно-функциональные изменения плотных контактов приводят к диффузии веществ из полостей в межклеточное вещество эпителия и далее в соединительную ткань и наоборот, что нарушает гомеостаз.

Патология функции синапсов сопровождается блокадой или усилением синаптической передачи с нарушениями функций нервной системы.

Микроскопически на ранних этапах повреждения чаще происходит округление (выравнивание формы и границ) клеток и потеря числа клеточных выростов и микроворсинок. В дальнейшем, наоборот, появляются на поверхности различные выросты и мелкие пузырьки, в норме не встречающиеся. Часто поверхность клетки как бы вскипает.

Таким образом, в приведенных в разделе материалах рассмотрены только некоторые из узловых моментов возможных нарушений. Они не могут охватить весь спектр подобных явлений, но позволяют наметить те направления изменений, которые происходят в клетке под влиянием повреждающих факторов. Каждое из изменений происходит не отдельно, а тянет за собой цепь структурно-функциональных нарушений во взаимодействующих между собой макромолекулярных комплексах, органеллах, частях клетки.

Дома соблюдаем режим воздуха 18 градусов, увлажняем, промываем нос физ. раствором, много пьем. Завтра ждём врача - и как всегда встанет вопрос об антибиотиках.

Гематокрит 35.7 % 32.0 - 42.0

Гемоглобин 12.3 г/дл 11.0 - 14.0

Эритроциты 4.58 млн/мкл 3.70 - 4.90

MCV (ср. объем эритр.) 77.9 фл 73.0 - 85.0

RDW (шир. распред. эритр) 13.3 % 11.6 - 14.8

MCH (ср. содер. Hb в эр.) 26.9 пг 25.0 - 31.0

МСHС (ср. конц. Hb в эр.) 34.5 г/дл 32.0 - 37.0

Тромбоциты 233 тыс/мкл

Лейкоциты 9.10 тыс/мкл 5..50

При исследовании крови на

Эозинофилы, % 0.1 * % 1.0 - 6.0

Базофилы, % 0.4 % < 1.0

Нейтрофилы, абс. 5.57 тыс/мкл 1.50 - 8.00

Лимфоциты, абс. 2.25 тыс/мкл 1.50 - 7.00

Моноциты, абс. 1.23 * тыс/мкл 0.00 - 0.80

Эозинофилы, абс. 0.01 тыс/мкл 0.00 - 0.70

Базофилы, абс. 0.04 тыс/мкл 0.00 - 0.20

Так же меня беспокоят, показания моноцитов.

Буду очень благодарна за помощь!

Причины повышенных лимфоцитов и пониженных нейтрофилов в крови

Лимфоциты и нейтрофилы относятся к группе белых клеток крови - лейкоцитов. Каждый вид выполняет определенную функцию по защите организма от болезней. В анализе крови оценивают не только общий уровень лейкоцитов, но и относительное содержание каждого вида белых клеток. Оно отображается в лейкоцитарной формуле. Нередко общее количество лейкоцитов остается неизменным, при этом меняется соотношение элементов в лейкоцитарной формуле.

Нейтрофилы - самая многочисленная группа, которая составляет у взрослого более половины всех лейкоцитов (от 45 до 72%). Главная их задача - борьба с бактериальными инфекциями. Они очень быстро реагируют на проникновение чужеродных микроорганизмов, сразу же устремляются в место внедрения, поглощают бактерии, переваривают их и погибают вместе с ними.

Лимфоциты в ответе за иммунитет. Основная их задача - борьба с вирусными инфекциями и уничтожение раковых клеток. Для борьбы с вредными агентами они вырабатывают антитела к ним.

Чтобы узнать, почему лимфоциты в крови повышены, а нейтрофилы понижены, нужно иметь представление о функциях этих клеток и возможных причинах изменения их уровня.

Почему могут быть понижены нейтрофилы?

  • инфекции вирусного происхождения (ветрянка, гепатиты, грипп);
  • воспалительные процессы;
  • лучевая болезнь;
  • прием некоторых препаратов (как правило, цитостатиков или иммунодеперссантов при лечении аутоиммунных болезней или злокачественных опухолей, а также антимикробных - пенициллина, цефалоспорина, сульфаниламида);
  • химиотерапия при онкозаболеваниях;
  • агранулоцитоз;
  • анемия (апластическая и гипопластическая);
  • воздействие радиации.

Почему повышаются лимфоциты?

Лимфоциты считаются главными иммунными клетками. Они вырабатывают антитела против чужеродных микроорганизмов, формируют гуморальный иммунитет. Они составляют порядка 25-40% от всех лейкоцитов. Повышение их в крови происходит в следующих случаях:

  • при вирусных заболеваниях;
  • при туберкулезе;
  • при остром и хроническом лимфолейкозе;
  • при лимфосаркоме;
  • при гипертиреозе.

Причины повышенных лимфоцитов и пониженных нейтрофилов

Более важное диагностическое значение имеет лейкоцитарная формула, поскольку чаще всего изменения происходят именно в ней, в то время как общее количество лейкоцитов не меняется. Так, при вирусных инфекциях абсолютный уровень лейкоцитов в крови остается в пределах нормы или слегка повышен, в то время как в лейкограмме лимфоциты повышены, а нейтрофилы понижены. Как было сказано выше, это происходит в основном при вирусных инфекциях, злокачественных опухолевых заболеваниях, при воздействии радиации, после приема некоторых лекарств. Такие изменения в лейкограмме говорят о том, что организм борется с болезнью.

Так выглядит лимфоцитоз в крови под микроскопом

Снижение гранулоцитов при повышенных лимфоцитах может наблюдаться, если человек недавно перенес ОРВИ или грипп. Как правило, показатели крови приходят в норму не сразу, а спустя некоторое время после выздоровления. Таким образом, нейтропения на фоне лимфоцитоза свидетельствует о том, что инфекция идет на убыль, наступает выздоровление.

Следует сказать, что повышенные лимоциты и пониженные нейтрофилы - это нормальное состояние для детей. Дело в том, что нормы для взрослых отличаются. Так, количество нейтрофилов у детей меньше, чем у взрослых, и составляет в разные годы жизни от 30 до 60%, у взрослых этот показатель - 45-72%. Лимфоцитов у детей, наоборот, больше, чем у взрослых - 40-65%.

Расшифровка анализов

При расшифровке анализа крови оцениваются все показатели в совокупности. При диагностике уделяется особое внимание лейкоцитарой формуле, которая отражает соотношение всех видов белых клеток крови. При заболеваниях содержание одних лейкоцитов может изменяться из-за повышения или понижения других. По лейкоцитарной формуле можно судить о развитии осложнений, о том, как протекает патологический процесс, а также прогнозировать исход заболевания.

По данным лейкограммы можно отличить вирусное заболевание от инфекционного. При вирусном общее число всех лейкоцитов не меняется или повышено незначительно, но есть изменения в лейкоцитарной формуле: лимфоциты повышены, нейтрофилы снижены. При этом СОЭ (скорость оседания эритроцитов) повышается незначительно, за исключением острых выраженных процессов вирусного происхождения. Что касается бактериального поражения, уровень лейкоцитов растет за счет роста гранулоцитов, относительное содержание лимфоцитов падает. СОЭ при бактериальных инфекциях достигает очень высоких значений.

В заключение

Таким образом, можно сделать вывод: если повышены лимфоциты и понижены нейтрофилы, то в организме присутствует очаг инфекции, скорее всего вирусной. Однако результаты анализа крови нужно сопоставлять с клинической картиной. Если какие-либо признаки заболеваний отсутствуют, возможно, речь идет о носительстве вируса. При понижении уровня гранулоцитов с одновременным повышением лимфоцитов требуется полное обследование, поскольку не исключены такие опасные патологии, как гепатиты, ВИЧ.

Здравствуйте! Подскажите, есть ли в этих данных повод для беспокойства? К какому специалисту (гематолог, терапевт, эндокринолог) стоит обратиться?

Эритроциты (RBC), 10^12/л 4.27 3.7 - 4.7

Гемоглобин (HGB), г/л..0

Гематокрит (HCT), л/л 0.395 0.36 - 0.42

Средний объем эритроцитов (MСV), фл 92.5 80.0 - 95.0

Средняя концентрация гемоглобина в эритроцитах (MCHC), г/л..0

Ширина распределения эритроцитов (RDW), % 12.5 11.5 - 14.5

Тромбоциты (PLT), 10^9/л..0

Средний объем тромбоцитов (MPV), фл 9.5 7.2 - 11.1

Лейкоциты (WBC), 10^9/л 5.1 4.0 - 9.0

Абсолютное количество незрелых гранулоцитов (#IG), 10^9/л 0 до 0.03

Нейтрофилы (#NEUT), 10^9/л 2 1.9 - 7.0

Лимфоциты (#LYMPH), 10^9/л 2.3 0.9 - 5.2

Моноциты (#MONO), 10^9/л 0.5 0.16 - 1.0

Эозинофилы (#EOS), 10^9/л 0.4 0.0 - 0.8

Базофилы (#BASO), 10^9/л 0 0.0 - 0.2

Процент незрелых гранулоцитов от общего числа WBC (%IG), % 0.2 до 0.9

Нейтрофилы (%NEUT), % 38.2 47.0 - 72.0

Лимфоциты (%LYMPH), % 45 19.0 - 37.0

Моноциты (%MONO), % 9.2 3.0 - 11.0

Эозинофилы (%EOS), % 7.2 0.0 - 5.0

Базофилы(%BASO), % 0.4 0.0 - 1.0

Мне 38 лет. В анализе следующие отклонения от нормы. Нейтрофилы(общ.число%)47.3. при исследовании крови на гемотологическом анализе .кол-во палочкоядерных нейтрофилов не превышает 6%.Лимфоциты 45.0.Эозинофилы0.0. Из отклонений в общем состоянии -недавно стали как будто неметь пальцы на левой руке. Что это может быть и к какому специалистуобратиться. Спасибо

Здравствуйте, скажите что было в итоге, сегодня забрал анализы, похожи на ваши, и есть онемение пальцев на правой руке - мизинец и безымянный.

Надежда, ответ адресован вам! Мне 30 лет проходил диспансеризацию влет, после прохождения сказали что у меня завышены лейкоциты в крови надо посетить врача (Сейчас уже не вспомню к кому направляли). К врачу на прием так и не попал, так как бывает он в определенные дни и попасть на прием сложно, надо звонить узнавать когда он будет. Забил на все это. Шел ремонт в квартире и было не до этого. Спать пришлось на полу пока шел ремонт, привык к жесткому полу, прошло месяца три. В один прекрасный момент общался через скайп и лежал как бы на боку, просто затекла рука и пальцы не предал этому какого-то значения. На следующий день онемение мизинца осталось, через два дня немел мизинец, безымянный палец и выше по ладони, немела правая рука. Затем началось еще лучше: онемение отошло от безымянного пальца, но мизинец немел и стали неметь пальцы на второй руке. Затем все усилилось. На правой руке немели мизинец, безымянный и ладонь снизу. Все это происходило около 4-5 месяцев, после само по себе прошло.

Что влияло на это я ответить не могу, так как к врачам не пошел. Сейчас все отлично. Вспомнив о том что мне ставили диагноз (завышены лейкоциты) 1.5 года назад решил почитать что это значило и нарвался на ваш комментарий.

Этот комментарий вы наверное не прочтете, но надеюсь успокоит того у кого такая же ситуация которая происходила со мной, сам по себе думаю это все было связанно с защемлением какого то нерва!

Друг если ты это читаешь и у тебя что то похожее сходи в больничку узнай что это за фигня и дополни мой комментарий))

Мне 40. Понижены нейтрофилы, повышены лимфоциты. Онемение кисти левой руки. Это правда защемление нервов, т.к. МРТ и рентген обнаружили протрузии шейного отдела.

Отличия абсолютного и относительного лимфоцитоза в анализе крови

Несколько лет назад я написал, чем отличаются вирусные и бактериальные инфекции по общему анализу крови, каких именно клеток становится больше и меньше при различных инфекциях. Статья получила определенную популярность, но нуждается в некотором уточнении.

Еще в школе учат, что количество лейкоцитов должно составлять от 4 до 9 миллиардов (× 10 9) на литр крови. В зависимости от своих функций лейкоциты делятся на несколько разновидностей, поэтому лейкоцитарная формула (соотношение разных видов лейкоцитов) в норме у взрослого человека выглядит так:

  • нейтрофилы (суммарно 48-78%):
    • юные (метамиелоциты) - 0%,
    • палочкоядерные - 1-6%,
    • сегментоядерные - 47-72%,
  • эозинофилы - 1-5%,
  • базофилы - 0-1%,
  • лимфоциты - 18-40% (по другим нормам 19-37%),
  • моноциты - 3-11%.

Например, в общем анализе крови выявлено 45% лимфоцитов. Это опасно или нет? Нужно ли бить тревогу и искать перечень болезней, при которых в крови увеличивается количество лимфоцитов? Об этом и поговорим сегодня, потому что в одних случаях такие отклонения в анализе крови являются патологическими, а в других - не представляют опасности.

Этапы нормального кроветворения

Посмотрим результаты общего (клинического) анализа крови парня 19 лет, больного сахарным диабетом 1 типа. Анализ сделан в начале февраля 2015 года в лаборатории «Инвитро»:

Анализ, показатели которого рассматриваются в этой статье

Красным фоном в анализе выделены показатели, отличающиеся от нормальных. Сейчас в лабораторных исследованиях слово «норма » используется реже, оно заменено на «референсные значения » или «референтный интервал ». Так делается, чтобы не запутать людей, потому что в зависимости от используемого метода диагностики одно и то же значение может быть как нормальным, так и отклонением от нормы. Референсные значения подбираются таким образом, чтобы им соответствовали результаты анализов 97-99% здоровых людей.

Рассмотрим результаты анализа, выделенные красным.

Гематокрит

Гематокрит - доля объёма крови, приходящаяся на форменные элементы крови (эритроциты, тромбоциты и тромбоциты). Поскольку эритроцитов численно намного больше (например, число эритроцитов в единице крови превышает число лейкоцитов в тысячу раз), то фактически гематокрит показывает, какую часть объема крови (в %) занимают эритроциты. В данном случае гематокрит на нижней границе нормы, а остальные показатели эритроцитов в норме, поэтому слегка сниженный гематокрит можно считать вариантом нормы.

Лимфоциты

В вышеупомянутом анализе крови 45,6% лимфоцитов. Это слегка выше нормальных значений (18-40% или 19-37%) и называется относительным лимфоцитозом. Казалось бы, это патология? Но давайте посчитаем, сколько лимфоцитов содержится в единице крови и сравним с нормальными абсолютными значениями их количества (клеток).

Число (абсолютное значение) лимфоцитов в крови равно: (4,69 × 10 9 × 45,6%) / 100 = 2,14 × 10 9 /л. Эту цифру мы видим в нижней части анализа, рядом указаны референтные значения: 1,00-4,80. Наш результат 2,14 можно считать хорошим, потому что находится практически по середине между минимальным (1,00) и максимальным (4,80) уровнем.

Итак, у нас имеется относительный лимфоцитоз (45,6% больше 37% и 40%), но нет абсолютного лимфоцитоза (2,14 меньше 4,8). В данном случае относительный лимфоцитоз можно считать вариантом нормы.

Нейтрофилы

Общее количество нейтрофилов считается как сумма юных (в норме 0%), палочкоядерных (1-6%) и сегментоядерных нейтрофилов (47-72%), суммарно их 48-78%.

Этапы развития гранулоцитов

В рассматриваемом анализе крови общее количество нейтрофилов равно 42,5%. Мы видим, что относительное (в %) содержание нейтрофилов ниже нормы.

Посчитаем абсолютное количество нейтрофилов в единице крови:

Относительно должного абсолютного количества клеток лимфоцитов имеется некоторая путаница.

1) Данные из литературы.

2) Референтные значения количества клеток из анализа лаборатории «Инвитро» (см. анализ крови):

3) Поскольку вышеуказанные цифры не совпадают (1.8 и 2.04), попробуем сами рассчитать пределы нормальных показателей числа клеток.

  • Минимально допустимое количества нейтрофилов - это минимум нейтрофилов (48%) от нормального минимума лейкоцитов (4 × 10 9 /л), то есть 1.92 × 10 9 /л.
  • Максимальное допустимое количество нейтрофилов - это 78% от нормального максимума лейкоцитов (9 × 10 9 /л), то есть 7.02 × 10 9 /л.

В анализе пациента 1.99 × 10 9 нейтрофилов, что в принципе соответствует нормальным показателям числа клеток. Однозначно патологическим считается уровень нейтрофилов ниже 1.5 × 10 9 /л (называется нейтропения ). Уровень между 1.5 × 10 9 /л и 1.9 × 10 9 /л считается промежуточным между нормой и патологией.

Нужно ли паниковать, что абсолютное число нейтрофилов находится около нижней границы абсолютной нормы? Нет. При сахарном диабете (и еще при алкоголизме) слегка сниженный уровень нейтрофилов вполне возможен. Чтобы убедиться, что опасения необоснованны, нужно проверить уровень молодых форм: в норме юных нейтрофилов (метамиелоцитов) - 0% и палочкоядерных нейтрофилов - от 1 до 6%. В комментарии к анализу (на рисунке не поместилось и обрезано справа) указано:

При исследовании крови на гематологическом .

У одного и того же человека показатели общего анализа крови довольно стабильны: если нет серьезных проблем со здоровьем, то результаты анализов, сделанные с интервалом в полгода-год, будут весьма похожи. Аналогичные результаты анализа крови у обследуемого были и несколько месяцев назад.

Таким образом, рассмотренный анализ крови с учетом сахарного диабета, стабильности результатов, отсутствия патологических форм клеток и отсутствия повышенного уровня молодых форм нейтрофилов можно считать практически нормальным. Но если возникают сомнения, нужно наблюдать пациента дальше и назначить повторный общий анализ крови (если автоматический гематологический анализатор не способен выявить все типы патологических клеток, то анализ должен быть на всякий случай дополнительно исследован под микроскопом вручную). В самых сложных случаях, когда ситуация ухудшается, для изучения кроветворения берут пункцию костного мозга (обычно из грудины).

Справочные данные при нейтрофилы и лимфоциты

Главная функция нейтрофилов - борьба с бактериями путем фагоцитоза (поглощения) и последующего переваривания. Погибшие нейтрофилы составляют существенную часть гноя при воспалении. Нейтрофилы являются «простыми солдатами » в борьбе с инфекцией:

  • их много (ежедневно в организме образуется и поступает в кровоток около 100 г нейтрофилов, это количество увеличивается в несколько раз при гнойных инфекциях);
  • живут недолго - в крови циркулируют недолго (12-14 часов), после чего выходят в ткани и живут еще несколько дней (до 8 суток);
  • много нейтрофилов выделяется с биологическими секретами - мокротой, слизью;
  • полный цикл развития нейтрофила до зрелой клетки занимает 2 недели.

Нормальное содержание нейтрофилов в крови у взрослого человека:

  • юные (метамиелоциты) нейтрофилы - 0%,
  • палочкоядерные нейтрофилы - 1-6%,
  • сегментоядерные нейтрофилы - 47-72%,
  • всего нейтрофилов - 48-78%.

Лейкоциты, содержащие специфические гранулы в цитоплазме, относятся к гранулоцитам. Гранулоцитами являются нейтрофилы, эозинофилы, базофилы .

Агранулоцитоз - резкое уменьшение числа гранулоцитов в крови вплоть до их исчезновения (меньше 1 × 10 9 /л лейкоцитов и меньше 0.75 × 10 9 /л гранулоцитов).

К понятию агранулоцитоза близко понятие нейтропении (сниженное количество нейтрофилов - ниже 1.5 × 10 9 /л). Сравнивая критерии агранулоцитоза и нейтропении, можно догадаться, что только выраженная нейтропения приведет к агранулоцитозу . Чтобы дать заключение «агранулоцитоз », недостаточно умеренно сниженного уровня нейтрофилов.

Причины сниженного количества нейтрофилов (нейтропении):

  1. тяжелые бактериальные инфекции,
  2. вирусные инфекции (нейтрофилы не борются с вирусами. Пораженные вирусом клетки уничтожаются некоторыми разновидностями лимфоцитов),
  3. угнетение кроветворения в костном мозге (апластическая анемия - резкое угнетение или прекращение роста и созревания всех клеток крови в костном мозге ),
  4. аутоиммунные заболевания (системная красная волчанка, ревматоидный артрит и др.),
  5. перераспределение нейтрофилов в органах (спленомегалия - увеличение селезенки),
  6. опухоли кроветворной системы:
    • хронический лимфолейкоз (злокачественная опухоль, при которой происходит образование атипичных зрелых лимфоцитов и их накопление в крови, костном мозге, лимфоузлах, печени и селезёнке. Одновременно угнетается образование всех остальных клеток крови, особенно с коротким жизненным циклом - нейтрофилов);
    • острый лейкоз (опухоль костного мозга, при которой происходит мутация стволовой кроветворной клетки и ее неконтролируемое размножение без дозревания в зрелые формы клеток. Может поражаться как общая стволовая клетка-предшественница всех клеток крови, так и более поздние разновидности клеток-предшественниц по отдельным кровеносным росткам. Костный мозг заполнен незрелыми бластными клетками, которые вытесняют и подавляют нормальное кроветворение);
  7. недостатков железа и некоторых витаминов (цианокобаламин, фолиевая кислота ),
  8. действие лекарственных препаратов (цитостатики, иммунодепрессанты, сульфаниламиды и др.)
  9. генетические факторы.

Увеличение числа нейтрофилов в крови (выше 78% или больше 5.8 × 10 9 /л) называется нейтрофилией (нейтрофилезом, нейтрофильным лейкоцитозом ).

4 механизма нейтрофилии (нейтрофилеза):

  1. усиление образования нейтрофилов:
    • бактериальные инфекции,
    • воспаление и некроз тканей (ожоги, инфаркт миокарда ),
    • хронический миелолейкоз (злокачественная опухоль костного мозга, при которой происходит неконтролируемое образование незрелых и зрелых гранулоцитов - нейтрофилов, эозинофилов и базофилов, вытесняющих здоровые клетки ),
    • лечение злокачественных опухолей (например, при лучевой терапии),
    • отравления (экзогенного происхождения - свинец, змеиный яд , эндогенного происхождения - уремия, подагра, кетоацидоз),
  2. активная миграция (досрочный выход) нейтрофилов из костного мозга в кровь,
  3. перераспределение нейтрофилов из пристеночной популяции (возле кровеносных сосудов) в циркулирующую кровь: при стрессе, интенсивной мышечной работе.
  4. замедление выхода нейтрофилов из крови в ткани (так действуют гормоны глюкокортикоиды, которые угнетают подвижность нейтрофилов и ограничивают их способность проникать из крови в очаг воспаления).

Для гнойных бактериальных инфекций характерно:

  • развитие лейкоцитоза - увеличения общего количества лейкоцитов (выше 9 × 10 9 /л) преимущественно за счет нейтрофилии - роста числа нейтрофилов;
  • сдвиг лейкоцитарной формулы влево - увеличение количества молодых [юных + палочкоядерных ] форм нейтрофилов. Появление юных нейтрофилов (метамиелоцитов) в крови является признаком тяжелой инфекции и доказательством, что костный мозг работает с большим напряжением. Чем больше молодых форм (особенно юных), тем сильнее напряжение иммунной системы;
  • появление токсической зернистости и других дегенеративных изменений нейтрофилов (тельца Деле, цитоплазматические вакуоли, патологические изменения ядра ). Вопреки устоявшемуся названию, эти изменения вызваны не «токсическим эффектом » бактерий на нейтрофилы, а нарушением созревания клеток в костном мозге. Созревание нейтрофилов нарушается из-за резкого ускорения по причине чрезмерной стимуляции иммунной системы цитокинами, поэтому, например, в большом количестве токсическая зернистость нейтрофилов появляется при распаде опухолевой ткани под влиянием лучевой терапии. Другими словами, костный мозг готовит молодых «солдат» на пределе своих возможностей и отправляет их «в бой» раньше срока.

Рисунок с сайта bono-esse.ru

Лимфоциты являются вторыми по численности лейкоцитами крови и бывают разных подвидов.

Краткая классификация лимфоцитов

В отличие от нейтрофилов-«солдат», лимфоциты можно отнести к «офицерам». Лимфоциты «обучаются» дольше (в зависимости от выполняемых функций они образуются и размножаются в костном мозге, лимфоузлах, селезенке) и являются высокоспециализированными клетками (распознавание антигена, запуск и осуществление клеточного и гуморального иммунитета, регуляция образования и деятельности клеток иммунной системы ). Лимфоциты способны выходить из крови в ткани, затем в лимфу и с ее током возвращаться обратно в кровь.

Для целей расшифровки общего анализа крови надо иметь представление о следующем:

  • 30% всех лимфоцитов периферической крови - короткоживущие формы (4 суток). Это большинство B-лимфоцитов и Т-супрессоры.
  • 70% лимфоцитов - длительно живущие (170 дней = почти 6 месяцев). Это остальные виды лимфоцитов.

Разумеется, при полном прекращении кроветворения сначала в крови падает уровень гранулоцитов, что становится заметным именно по количеству нейтрофилов , поскольку эозинофилов и базофилов в крови и в норме очень мало. Чуть позже начинает снижаться уровень эритроцитов (живут до 4 месяцев) и лимфоцитов (до 6 месяцев). По этой причине поражение костного мозга выявляется по тяжелым инфекционным осложнениям, которые очень трудно лечить.

Поскольку развитие нейтрофилов нарушается раньше остальных клеток (нейтропения - меньше 1.5 × 10 9 /л), то в анализах крови чаще всего выявляется именно относительный лимфоцитоз (больше 37%), а не абсолютный лимфоцитоз (больше 3.0 × 10 9 /л).

Причины повышенного уровня лимфоцитов (лимфоцитоза) - больше 3.0 × 10 9 /л:

  • вирусные инфекции,
  • некоторые бактериальные инфекции (туберкулез, сифилис, коклюш, лептоспироз, бруцеллез, иерсиниоз ),
  • аутоиммунные заболевания соединительной ткани (ревматизм, системная красная волчанка, ревматоидный артрит ),
  • злокачественные опухоли,
  • побочное действие лекарств,
  • отравления,
  • некоторые другие причины.

Причины сниженного уровня лимфоцитов (лимфоцитопении) - меньше 1.2 × 10 9 /л (по менее строгим нормам 1.0 × 10 9 /л):

  • апластическая анемия,
  • ВИЧ-инфекция (первично поражает разновидность Т-лимфоцитов, называемую T-хелперами),
  • злокачественные опухоли в терминальной (последней) фазе,
  • некоторые формы туберкулеза,
  • острые инфекции,
  • острая лучевая болезнь,
  • хроническая почечная недостаточность (ХПН) в последней стадии,
  • избыток глюкокортикоидов.

КЛИНИЧЕСКИЙ АНАЛИЗ КРОВИ

Гематокрит 45.4 % реф. значения(39.0 - 49.0)

Гемоглобин 14.6 г/дл реф. значения(13.2 - 17.3)

Эритроциты 5.16 млн/мкл реф. значения(4.30 - 5.70)

MCV (ср. объем эритр.) 88.0 фл реф. значения(80.0 - 99.0)

MCH (ср. содер. Hb в эр.) 28.3 пг реф. значения(27.0 - 34.0)

МСHС (ср. конц. Hb в эр.) 32.2 г/дл реф. значения(32.0 - 37.0)

Тромбоциты 320 тыс/мкл реф. значения()

Лейкоциты 8.55 тыс/мкл реф. значения(4..00)

Нейтрофилы (общ.число), % 45.0* % реф. значения(48.0 - 78.0) *При исследовании крови на гематологическом

анализаторе патологических клеток не обнаружено. Количество палочкоядерных нейтрофилов не превышает 6%

Лимфоциты, % 42.7* % реф. значения(19.0 - 37.0)

Моноциты, % 8.5 % реф. значения(3.0 - 11.0)

Эозинофилы, % 3.4 % реф. значения(1.0 - 5.0)

Базофилы, % 0.4 % реф. значения(< 1.0)

Нейтрофилы, абс. 3.85 тыс/мкл реф. значения(1.78 - 5.38)

Лимфоциты, абс. 3.65* тыс/мкл реф. значения(1.32 - 3.57)

Моноциты, абс. 0.73 тыс/мкл реф. значения(0.20 - 0.95)

Эозинофилы, абс. 0.29 тыс/мкл реф. значения(0.00 - 0.70)

Базофилы, абс. 0.03 тыс/мкл реф. значения(0.00 - 0.20)

СОЭ (по Вестергрену) 2 мм/ч реф. значения(< 15)

Потом все кусты смородины завяли, от этого процент кустов малины стал гораздо больше – аж 100%!, а количество-то не изменилось. И кустов малины не стало МНОГО, несмотря на внушительный процент, и не стало БОЛЬШЕ!

Вот сдал анализ посмотреть нет ли каких воспалительных процессов. Как я понял лимфоциты как раз показывают что идут какие-то процессы борьбы с воспалением? Либо я ошибаюсь.

Ещё раз заранее благодарю, больше вопросов не будет, задам уже терапевту очно, если соберусь! А вам скажу спасибо через сайт!)

Помогите расшифровать анализ крови ребенка 11 лет

Цветной показатель крови 0,98

Нейтрофилы сегментоядерные 37

Сильное повышение лимфоцитов и понижение нейтрофилов. Я так понимаю это очень плохо. Ребенок болел, но 1,5 месяца назад, на данный момент здоров. Какие действия в дальнейшем предпринять?

Добрый день. Помогите расшифровать клинический анализ крови. Сдавала в Инвитро.

Беспокоят повышенные лимфоциты. Или это незначительные отклонения?

Гематокрит 39.2 % реф. значения(39.0 - 49.0)

Гемоглобин 13.3 г/дл реф. значения(13.2 - 17.3)

Эритроциты 4.47 млн/мкл реф. значения(4.30 - 5.70)

MCV (ср. объем эритр.) 87.7 фл реф. значения(80.0 - 99.0)

RDW (шир. распред. эритр) 12.9 % реф. значения(11.6 - 14.8)

MCH (ср. содер. Hb в эр.) 29.3 пг реф. значения(27.0 - 34.0)

МСHС (ср. конц. Hb в эр.) 33.9 г/дл реф. значения(32.0 - 37.0)

Тромбоциты 274 тыс/мкл реф. значения()

Лейкоциты 5.92тыс/мкл реф. значения(4..00)

Нейтрофилы (общ.число), % 44.7* % реф. значения(48.0 - 78.0) *При исследовании крови на гематологическом

анализаторе патологических клеток не обнаружено. Количество палочкоядерных нейтрофилов не превышает 6%

Лимфоциты, % 44.9* % реф. значения(19.0 - 37.0)

Моноциты, % 7.4 % реф. значения(3.0 - 11.0)

Эозинофилы, % 2.7 % реф. значения(1.0 - 5.0)

Базофилы, % 0.3 % реф. значения(< 1.0)

Нейтрофилы, абс. 2.66 тыс/мкл реф. значения(1.78 - 5.38)

Лимфоциты, абс. 2.66* тыс/мкл реф. значения(1.32 - 3.57)

Моноциты, абс. 0.44 тыс/мкл реф. значения(0.20 - 0.95)

Эозинофилы, абс. 0.16 тыс/мкл реф. значения(0.00 - 0.70)

Базофилы, абс. 0.02 тыс/мкл реф. значения(0.00 - 0.20)

СОЭ (по Вестергрену) 5 мм/ч реф. значения(< 15)в прошлом году лимфоциты были 39.8 врач предположил что был какой то воспалительный процесс,по предыдущим вашим комментариям сравнила,получается и у меня норма?

Патологических клеток не обнаружено

Есть ли анализ на выявление аллергена у младенца 7 недель?

Уважаемая Александра! Аллергологическое обследование у детей раннего детского возраста по определению специфических антител IgE и G к пищевым аллергенам в крови не проводится, так как у детей данной возрастной категории в кровеносном русле циркулируют материнские антитела, а собственная иммунная система еще не способна адекватно синтезировать иммуноглобулины. Кожные заболевания у детей данного возраста, как правило, бывают обусловлены нарушением состава микрофлоры толстого кишечника, недостаточностью ферментов, анемией, в связи с чем рекомендую Вашему ребенку выполнить клинический анализ крови (тест № 1515), анализ кала на дисбактериоз с определением чувствительности к бактериофагам (тесты №№ 456, 443), копрограмму (тест № 158) и обратиться к педиатру, аллергологу и детскому гастроэнтерологу для определения дальнейшей тактики. Более подробную информацию о ценах на исследования и подготовке к ним можно узнать на сайте Лаборатории ИНВИТРО в разделах: «Анализы и цены» и «Профили исследований», а так же по телефону (единая справочная Лаборатории ИНВИТРО).

Патологических клеток не обнаружено

При исследовании пробы на гематологическом анализаторе патологических клеток не обнаружено.

Общий анализ крови

Эритроциты (RBC) 4,54 10^12/л 3,90 - 4,70

Средний объем эритроцита (MCV) 85,7 фл

Средняя концентрация гемоглобина (MCHC) 329 г/дл

Индекс распределения эритроцитов (RDW-SD) 37,7 фл 35,1 - 46,3

Индекс распределения эритроцитов (RDW-CV) 12,3 % 11,5 - 14,5

Гематокрит (HCT) 38,9 % 34,0 - 45,0

Тромбоциты (PLT)^9/л

Средний объем тромбоцитов (MPV) 11,7 фл 9,4 - 12,4

Индекс распределения тромбоцитов (PDW) 15,1 фл 9,0 - 17,0

Тромбокрит (PCT) 0,27 % 0,17 - 0,35

Лейкоциты (WBC) 5,6 10^9/л 4,0 - 9,0

Базофилы (Baso%) 0,4 % 0,0 - 1,0

Базофилы (Baso) abs 0,020 10^9/л 0,065

Эозинофилы (EO%) 1,4 % 0,5 - 5,0

Эозинофилы (EO) abs 0,08 10^9/л 0,02 - 0,30

Нейтрофилы (NEUT%) 42,7 ниже % 45,0 - 72,0

Нейтрофилы (NEUT) abs 2,39 10^9/л 2,00 - 5,50

Лимфоциты (LYMP%) 46,4 выше % 19,0 - 37,0

Лимфоциты (LYMP) abs 2,60 10^9/л 1,20 - 3,00

Моноциты (Mono%) 9,1 % 3,0 - 11,0

Моноциты (Mono) abs 0,51 10^9/л 0,09 - 0,60

Общий (клинический) анализ крови содержит много показателей, по которым врач оценивает состояние здоровья пациента. Изменение значения каждой из этих характеристик указывает на возможность развития той или иной патологии в организме. Одним из важных показателей развернутого общего анализа крови является количество нейтрофилов. Рассмотрим, что означает этот показатель, и на что указывают изменения количества нейтрофилов в анализе крови.

Нейтрофилы в крови человека

Нейтрофилы представляют собой наиболее многочисленный вид лейкоцитов крови (белые клетки крови, которые участвуют в формировании иммунитета организма).

Данные клетки крови образуются в красном костном мозге из гранулоцитарного ростка кроветворения. Нейтрофилы принадлежат к гранулоцитарным клеткам крови, которые содержат в своей цитоплазме зернистость (гранулы). В этих гранулах нейтрофилов находятся миелопероксидаза, лизоцим, катионные белки, кислые и нейтральные гидролазы, коллагеназа, лактоферрин, аминопептидаза. Благодаря такому содержимому своих гранул нейтрофилы выполняют важные функции в организме. Они проникают из крови в органы и ткани организма и уничтожают болезнетворные, чужеродные микроорганизмы. Уничтожение происходит путем фагоцитоза, то есть нейтрофилы поглощают и переваривают чужеродные частицы, после чего сами погибают.

Специалисты выделяют шесть стадий созревания нейтрофилов: миелобласт, промиелоцит, метамиелоцит (юная клетка), палочкоядерная, сегментоядерная. Нейтрофилы сегментоядерные являются зрелыми клетками и содержат ядро, разделенное на сегменты. Все остальные формы являются незрелыми (молодыми). В крови человека значительно больше сегментоядерных нейтрофилов, чем незрелых клеток. В случае появления в организме инфекции или воспалительного процесса костный мозг активно выбрасывает в кровь незрелые формы нейтрофилов. По количеству таких нейтрофилов в анализе крови можно выявить наличие инфекционного процесса в организме и установить активность его протекания.

Большая часть нейтрофилов (около 60%) содержится в костном мозге, чуть менее 40% этих клеток находится в органах и тканях, и только приблизительно 1% нейтрофилов циркулирует в периферической крови человека. При этом согласно расшифровке анализа крови на нейтрофилы в норме в периферической крови должны содержаться только сегментоядерные и палочкоядерные клетки.

Клетка нейтрофила после выхода из костного мозга в течение нескольких часов циркулирует в периферической крови. После этого нейтрофил мигрирует в ткани. Его продолжительность жизни в тканях составляет 2-48 часов, в зависимости от наличия воспалительного процесса. Определяются нейтрофилы в общем анализе крови при подсчете лейкоцитарной формулы (процентного содержания разных видов лейкоцитов относительно их общего количества).

Расшифровка анализа крови на нейтрофилы

Нормальное содержание нейтрофилов в общем анализе крови у взрослых составляет 45-70% от общего содержания всех лейкоцитов или 1,8-6,5×10 9 /л. У детей норма нейтрофилов в крови зависит от возраста. У ребенка первого года жизни она составляет 30-50% или 1,8-8,4×10 9 /л, до семи лет – 35-55% или 2,0-6,0×10 9 /л, до 12 лет – 40-60% или 2,2-6,5×10 9 /л.

При этом в общем количестве нейтрофилов норма сегментоядерных форм составляет 40-68%, палочкоядерных форм – 1-5%.

Повышение количества нейтрофилов (нейтрофилез) является специфической формой защиты организма от проникновения инфекции и развития воспалительного процесса. Обычно нейтрофилез сочетается с лейкоцитозом (повышение числа лейкоцитов), при этом увеличение количества палочкоядерных нейтрофилов указывает на развитие бактериальной инфекции в организме.

Незначительное повышение содержания нейтрофилов в крови наблюдается при чрезмерной физической нагрузке, сильных психоэмоциональных напряжениях, после сытной еды, при беременности.

Но значительное увеличение количества нейтрофилов в анализе крови может указывать на развитие следующих патологий:

  • умеренный или локализованный воспалительный процесс (уровень нейтрофилов в крови повышается до 10,0×10 9 /л);
  • обширный воспалительный процесс в организме (уровень нейтрофилов в крови повышается до 20,0×10 9 /л);
  • генерализованный воспалительный процесс, например, при сепсисе стафилококковой этиологии (уровень нейтрофилов в крови повышается до 40,0-60,0×10 9 /л);

Состояние, при котором в крови появляются незрелые формы нейтрофилов (миелоциты, промиелоциты), увеличивается количество палочкоядерных и юных форм, называют сдвигом лейкоцитарной формулы влево. Такое состояние наблюдается при особо тяжелых и обширных инфекционных процессах, в частности при гнойных инфекциях.

Понижение нейтрофилов в анализе крови (нейтропения) указывает на функциональное или органическое угнетение кроветворения в костном мозге. Еще одной причиной нейтропении может быть активное разрушение нейтрофилов под действием токсических факторов, антител к лейкоцитам, циркулирующих иммунных комплексов. Обычно снижение уровня нейтрофилов наблюдается при ослаблении иммунитета организма.

Специалисты различают нейтропению врожденную, приобретенную и невыясненного происхождения. Хроническая доброкачественная нейтропения нередко встречается у малышей до года жизни. Такое состояние в норме может быть у деток до двух-трех лет, после чего данный показатель крови должен нормализоваться.

Чаще всего понижение нейтрофилов в анализе крови наблюдается при следующих заболеваниях и состояниях:

  • вирусные инфекционные заболевания (грипп, краснуха, корь);
  • бактериальные инфекции (брюшной тиф, бруцеллез, паратиф);
  • протозойные инфекционные болезни (токсоплазмоз, малярия);
  • риккетсиозные инфекционные заболевания (сыпной тиф);
  • воспалительные заболевания, которые протекают в тяжелой форме и приобретают характер генерализованного инфекционного процесса;
  • апластическая и гипопластическая анемии;
  • агранулоцитоз (резкое уменьшение числа нейтрофилов в крови);
  • гиперспленизм (уменьшение содержания лейкоцитов, эритроцитов, тромбоцитов в крови вследствие их разрушения или накопления в увеличенной селезенке);
  • лучевая терапия, радиационное облучение;
  • выраженный дефицит массы тела, кахексия (крайнее истощение организма);
  • прием некоторых лекарственных препаратов (сульфаниламиды, цитостатики, анальгетики, левомицетин, пенициллины).

В некоторых случаях снижение числа нейтрофилов носит временный, непродолжительный характер. Такое состояние, например, наблюдается в ходе проведения противовирусной терапии. Данная нейтропения является обратимой, она проходит после прекращения приема лекарств. Однако если уменьшение числа нейтрофилов в анализе крови сохраняется в течение длительного времени, это может указывать на развитие хронического заболевания кроветворной системы. Кроме того, возрастает риск инфекционных заболеваний, если низкое содержание нейтрофилов сохраняется на протяжении более трех суток.

Появление атипичных лимфоцитов в анализе крови

Что делать, когда в анализе крови обнаруживаются атипичные лимфоциты? Данный вопрос беспокоит многих людей, получивших результаты исследования биологического материала, сданного на анализ.

Если и вы хотите получить ответ на вопрос и узнать про причины появления атипичных лимфоцитов, то читайте статью.

Общая информация

Лимфоцитами называют разновидности клеток крови, отвечающих за защитные процессы организма при его поражении различными заболеваниями.

Атипичные лимфоциты являются модификацией «стандартных» белых кровяных телец, отличающихся размерами и «рабочими» свойствами.

В идеале у здорового взрослого человека или ребенка количество лимфоцитов в крови должно попадать в границы пределов референтной нормы.

Количество телец значительно возрастает тогда, когда организм пациента приступает к борьбе с какой-либо проблемой, поражающей ткани, органы или иммунную систему.

Состояние, при котором лимфоциты повышены, называют лимфоцитозом. Иногда патология может наблюдаться и у внешне здоровых людей, не имеющих жалоб на какие-либо проблемы с самочувствием.

В таком случае при выявленном и подтвержденном повторными анализами лимфоцитозе пациентам следует посетить профильного врача – гематолога, занимающегося исследованием патологий крови.

Атипичные лимфоциты бывают различных видов. Данные виды названы в честь врачей, исследовавших болезни крови и впервые обнаруживших тот или иной вид атипичных клеток.

Первая группа атипичных телец называется клетками Дауни. Впервые они были выявлены в первой трети двадцатого века у пациентов, страдающих от патологий, спровоцированных наличием цитомегаловируса или вируса Эпштейна-Барра.

Вторая группа атипичных лимфоцитов названа в честь известного гематолога Ридера, исследовавшего различные патологии крови своих пациентов.

Ридер выявил, что у многих из тех, кто страдали от острой лейкемии, лимфоциты приобретают иное строение.

В частности, ядра таких лимфоцитов словно разделены пополам и обладают неравным контуром. Иногда тельца данной группы называют амитотическими.

Третья группа атипичных лимфоцитов называется клетками Боткина-Клейна-Гумпрехта. Основное заболевание, провоцирующее появление данных атипичных телец, – лимфаденоз.

Клетки данного вида не обладают какими-либо полезными функциями, но при этом постоянно находятся в крови пациентов, страдающих от патологий. В некоторых медицинских источниках можно встретить альтернативное название данных атипичных лимфоцитов, звучащее как «тени Боткина-Клейна-Гумпрехта».

Разновидности атипичных лимфоцитов

Атипичные лимфоциты появляются в организме под воздействием различных антигенов. Главной отличительной чертой является увеличенный размер клеток.

Для сравнения, размер «стандартных» телец колеблется в районе десяти – двенадцати микрометров, размер атипичных лимфоцитов составляет около тридцати микрометров.

Стандартные лимфоциты имеют характерную круглую форму, а лимфоциты, обладающие атипичным происхождением, могут видоизменяться, превращаясь в многоугольные клетки, обладающие неравномерными по длине рваными гранями.

Главные изменения, специфические для атипичных лимфоцитов, происходят внутри их ядер.

В ходе лабораторного исследования данных клеток можно обнаружить, что внутри них располагаются не обычные, гладкие и слегка удлиненные ядра, а ядра вытянутой формы, покрытые микротрещинами и небольшими вмятинами.

Анализ крови, направленный на выявление атипичных телец, предполагает использование специализированных реактивов, позволяющих правильно оценить окрас клеток.

В качестве дополнительных реактивов традиционно используются вещества, называемые «гематоксилином» и «эозином».

После взаимодействия с данными веществами лимфоциты атипичного вида, находящиеся в составе биологического материала пациента, взятого на анализ, приобретают темно-серый или синеватый цвет, причем их ядра окрашиваются в оттенки фиолетового цвета. Классические лимфоциты имеют жемчужный, слегка сероватый или желтоватый оттенок.

Повышенное количество лимфоцитов в крови пациента может быть спровоцировано различными факторами. Выделяют реактивный, постинфекционный и злокачественный лимфоцитоз.

Реактивный лимфоцитоз появляется вследствие значительно ослабленного иммунитета.

Организм, незащищенный даже от не самых значительных патологических ситуаций, порождает большое количество как обычных, так и атипичных телец, обладающих большими размерами и неспособных эффективно бороться с заявленными проблемами.

Постинфекционный лимфоцитоз является наиболее безопасным для человека, так как носит временный характер.

Основной причиной его появления называют вирусные или инфекционные заболевания, перенесенные в недавнем прошлом.

Злокачественный лимфоцитоз – патологический симптом, характерный для людей, страдающих от каких-либо онкологических заболеваний.

Онкология стимулирует организм человека вырабатывать огромное количество лимфоцитов, часть из которых перерождается в атипичные клетки.

Причины появления

Если анализ крови покажет присутствие в биологическом материале атипичных лимфоцитов, то не стоит паниковать и думать о плохом.

В подавляющем большинстве случаев их нахождение будет оправдано недавно перенесенными вирусными заболеваниями или различными аллергическими процессами, протекающими в тканях организма.

Чтобы нивелировать проблему и не спровоцировать развитие более серьезных патологических ситуаций, следует заняться восстановлением иммунной системы.

После ее восстановления иммунитет перестанет производить на свет неполноценные, атипичные кровяные тельца и вновь будет готов к борьбе с возможными заболеваниями.

Однако в некоторых случаях наличие атипичных телец в крови у ребенка или взрослого может указывать на ряд достаточно серьезных патологий, которые требуют либо незамедлительного (и зачастую радикального) лечения либо тщательного контроля врача над их течением.

Речь идет о таких патологиях, как:

  • лимфолейкоз (поражение лимфатической системы раковыми клетками);
  • бруцеллез (заболевание инфекционного спектра, передающееся людям от контакта с животными и негативным образом сказывающееся на правильной работе нервной и сердечно-сосудистой систем);
  • сифилис (инфекция, поражающая слизистые ткани, костную и нервную систему);
  • токсоплазмоз (заболевание, не имеющее ярко выраженных симптомов, но при этом в острой форме разрушающее все системы организма);
  • пневмония, ветрянка, гепатит и проч.

Кроме того, появление атипичных лимфоцитов в организме человека может быть вызвано длительным лечением каких-либо патологий, в ходе которого использовались специализированные сыворотки животного происхождения, предназначенные для повышения радикально ослабленного иммунитета.

Данные сыворотки могут восприниматься телом пациента, получающего лечение, в качестве инородных реагентов, поэтому его организм может начать бороться с компонентами, входящими в их состав, используя остатки собственной, но изрядно истощенной иммунной системы.

Лабораторные анализы и лечение проблемы

Чтобы выявить наличие или отсутствие атипичных лимфоцитов в биологическом материале пациента, врачи направляют человека на сдачу общего анализа крови, подразумевающего детальное исследование уровня и разновидностей лейкоцитов, эритроцитов, лимфоцитов и тромбоцитов.

Чтобы получить направление на анализ, следует посетить терапевта – врача общей практики, или гематолога – доктора, специализирующегося на лечении заболеваний крови.

Впрочем, дать направление на данный анализ могут и другие профильные врачи в том случае, когда заподозрят у пациента, жалующегося на определенные симптомы, какие-либо проблемы со здоровьем, предполагающие наличие атипичных телец.

Состояниям, для которых характерно появление атипичных лимфоцитов в крови, в одинаковой степени подвержены как взрослые люди, так и маленькие дети, обладающие сниженным иммунитетом, не способным самостоятельно, без помощи лекарственных средств, бороться с возникающими заболеваниями.

Лечение проблемы, для которой характерно повышение данного показателя, симптоматическое и зависит от вида патологии-катализатора процесса выработки атипичных лимфоцитов.

Если причиной всему – аллергия, то больным назначают прием антигистаминных препаратов.

Тогда, когда появление атипичных телец вызывается различными бактериальными инфекциями, используют антибиотики узкого или широкого спектра действия.

При наличии более серьезных патологий у пациентов им назначают комплексное лечение, состоящее из нескольких фаз.

Лимфоциты атипичного вида, обнаруженные в общем анализе крови – повод для проведения дополнительных уточняющих исследований биологического материала.

В норме они должны отсутствовать в человеческом организме. Чтобы исключить риск появления или прогрессирования каких-либо патологических ситуаций, для которых характерно появление данного показателя, следует внимательно прислушиваться к рекомендациям лечащего врача.

гематологический анализ крови

Популярные статьи на тему: гематологический анализ крови

Актуальность анестезиологического обеспечения хирургических вмешательств у гематологических больных обусловлена интенсификацией методов терапии заболеваний системы крови, необходимостью применения хирургических вмешательств при сопутствующей патологии у..

7 октября 2004 года в Киеве произошло два события – рабочее совещание главных областных гематологов Украины и совещание.

Желтуха – окрашивание кожи, слизистых оболочек и склер в желтый цвет различных оттенков вследствие накопления билирубина. Выявляется при билирубинемии свыше 34,0 мкмоль/л.

Легочными эозинофилиями называют группу заболеваний легких, в основе которых лежит гиперэозинофильный синдром.

тематический номер: ИНФЕКЦИИ В ПРАКТИКЕ ВРАЧА Сепсис – одна из наиболее серьезных проблем современной интенсивной терапии. И насколько сложным и тяжелым является это заболевание, настолько же много вопросов возникает у.

Под атрофическим гастритом понимают прогрессирующий воспалительный процесс слизистой оболочки желудка, характеризующийся утратой желудочных желез. Клинико-морфологической особенностью атрофического гастрита являются уменьшение числа специализированных.

Вторичная профилактика инсульта наиболее актуальна у больных, перенесших малый инсульт или транзиторную ишемическую атаку (ТИА). Для точного установления диагноза ишемического инсульта (ИИ) или ТИА требуется проведение нейровизуализации.

Под вторичной профилактикой при эссенциальной артериальной гипертензии следует понимать комплекс лечебных мероприятий, направленных на предотвращение развития фатальных и нефатальных сердечно-сосудистых осложнений.

Залог успеха в лечении - правильно поставленный диагноз. И одно из первых мест в этом процессе занимает лабораторная диагностика, часто при постановке диагноза данные лабораторных исследований играют решающую роль. На сегодняшний день в Украине.

Вопросы и ответы по: гематологический анализ крови

Хотелось бы подтвердить у Вас правильность поставленного мне диагноза.

Обратилась к врачу-гастроэнтерологу с прыщами на лице (4 года уже).

До этого посетила гинеколога, сдала все анализы(все в норме) - направил в гастроэнтерологию.

В октябре 2014 г. отравилась вареным рубцом (не промыла до конца) , после чего присутствуют постоянные не сильные боли в левом боку, кашеобразный стул в основном и покалывания в животе. Делала узи брюшной полости: есть диффузные изменения поджелудочной железе.

Гастроэнтеролог направил на анализы: биохимия крови, дисбактериоз и гематологические исследования крови.

По анализам все в норме кроме: билирубин прямой повышен 10,34 и липаза 68,8

И по анализу дисбактериоза: Klebsiella oxytoca 10″6 (повышена) , так же понижены значения лактобактерий, бифидобактерий и E/coli типичные

Плюс заметила температура 37,0 - 37,5 держится уже почти месяц..

Вопрос: точно ли это хронический панкреатит и как определить поточнее? Если да, то лечиться ли он окончательно?

Беременность 17 недель, по результатам общего анализа крови мне ставят анемию.

ОАК: Клинический анализ крови.

Гематокрит 0.335 * л/л норма 0..450

Гемоглобин 114 * г/л норма

Эритроциты 3.62 * млн/мкл норма 3.80 - 5.10

MCV (ср. объем эритр.) 93.0 фл норма 81..0

RDW (шир. распред. эритр) 12.7 % норма 11.6 - 14.8

MCH (ср. содер. Hb в эр.) 31.5 пг норма 27.0 - 34.0

МСHС (ср. конц. Hb в эр.) 340 г/л норма

Тромбоциты 244 тыс/мкл норма

Лейкоциты 13.20 * тыс/мкл норма 4..00

66.1 % норма 48.0 - 78.0 При исследовании крови на

патологических клеток не обнаружено.

Количество палочкоядерных нейтрофилов

Лимфоциты, % 25.3 % норма 19.0 - 37.0

Моноциты, % 6.9 % норма 3.0 - 11.0

Эозинофилы, % 1.1 % норма 1.0 - 5.0

Базофилы, % 0.6 % норма 20 положительный)

Igg-Vca 591 ед.мл (>20 положитеельный)

Кровь пцр и слюна пцр отицательна

Еще хронический Тонзилит.

Какие посоветоваете лекарства принемать при таких показателей

И расшифруйте пожалуйста имунограмму.

Повышение иммуноглобулина Е – показатель аллергизации организма. Повышение ЦИК также характерно для аллергических заболеваний и системних, аутоиммунных заболеваний, васкулитов.

Снижение числа Т-хелперов характерно для некоторых вирусных инфекций и Т-клеточного иммунодефицита, для аутоиммунных заболеваний.

Повышение В-лимфоцитов выявляется редко, отражая изменения в других лимфоцитарных субпопуляциях, и может наблюдаться при инфекции вирусом Эпштейна-Барра и лимфопролиферативных заболеваниях.

В любом случае, результат иммунограммы нужно оценивать в комплексе с человеком, его жалобами и результатами других анализов и тестов. Так что вам нужно на очный прием к иммунологу.

Новости на тему: гематологический анализ крови

С начала осени сеть медицинских лабораторий «Синэво» предоставляет новую услугу. Будущие матери, жительницы столицы Украины, могут пройти проверку на наличие диабета беременных у себя дома – это исследование входит в перечень обязательных анализов.

По результатам масштабного исследования, проведенного в лабораторных центрах «Синэво» в апреле – мае текущего года, у 13,5% обследованных обнаружено повышение уровня сахара в крови.

По результатам конкурса «Фавориты Успеха» 2012 в Украине, ТМ «Cинэво» признана лучшей в категории «Лабораторные диагностические исследования, анализы».

В текущем году медицинская лаборатория «Синэво» продолжает расширять свою сеть для того, чтобы качественные анализы стали доступны еще большему числу граждан нашей страны. К концу года жители пяти новых городов смогут пользоваться услугами лаборатории.

В 2013 году в Украине ожидается открытие около 30-ти новых лабораторных центров «Синэво». Таким образом, их количество увеличится до 160. Также «Синэво» планирует открытие одной новой региональной лаборатории.

Существует довольно большой список заболеваний, при которых женщине становиться матерью абсолютно противопоказано, так как серьезная перестройка организма при беременности является сильнейшим стрессом, который может стать фатальным. Активная форма туберкулеза, краснуха, тяжелые формы гепатитов – вот лишь некоторые из недугов, при которых беременность опасна. Онкологические заболевания являются абсолютным противопоказанием к беременности – рост некоторых опухолей может значительно усилиться вследствие беременности. Однако жительница Шотландии, заболев миелофиброзом, тяжелым недугом, поражающим в первую очередь костный мозг, решилась на вынашивание и роды, несмотря на все предостережения докторов. Чудесным образом появление на свет сына излечило ее от болезни – на протяжении уже более года анализы показывают полное отсутствие у нее миелофиброза.

С ноября 2012 года в медицинской лаборатории «Синэво» стало возможным полное исследование генома человека. Исследование состоит из нескольких программ, включающих тестирование на более чем 110 заболеваний. Особенности генома каждого человека уникальны и не меняются в течение жизни, поэтому достаточно провести генетическое исследование один раз в жизни.

Шамрай Владимир Степанович - заведующий гематологическим отделом ГУЗ «Ростовская областная клиническая больница», главный гематолог МЗ РО, ассистент кафедры внутренних болезней,врач высшей квалификационной категории

Редактор страницы: Крючкова Оксана Александровна

Ретикулярная клетка. Клетка основы кроветворных органов (ретикулярного синцития). Большей частью форма неправильная, вытянутая, ядро круглое, оваль­ное или вытянутое, цитоплазма обильная, окрашивается слабо базофильно, в ней может быть обнаружена мел­кая азурофильная грануляция. Обнаруживается в стернальном пунктате в количестве 1-3%.

В патологических условиях может превращаться в макрофаги, плазматические клетки.

Гемогистобласт. Клетка стромы кроветворных орга­нов величиной до 20-25, имеющая различную форму. Ядро круглое, нежного, губчатого строения, содержит 2- 3 ядрышка. Цитоплазма слабо базофильна, вклю­чений не содержит. Иногда в цитоплазме обнаруживают­ся азурофильные включения в виде мельчайшей зерни­стости, иногда в форме палочек.

Гемоцитобласт. Общая родоначальная клетка (со­гласно унитарной теории) для всех кровяных элемен­тов: белого, красного ряда и кровяных пластинок (тром­боцитов). Имеет крупную величину - до 20. Форма круглая или овальная, ядро большое круглое или овальное, почковидное или лопастное, нежной сетчато- зернистой структуры. При окраске азур-эозином - красно-фиолетовое. Ядро содержит 2-5 ядрышек. Во­круг ядра может быть обнаружена (не всегда) розова­того цвета перинуклеарная зона. Цитоплазма базофильна, обычно без включений. Иногда в цитоплазме может быть обнаружена мелкая азурофильная зерни­

стость или азурофильные тельца сигарообразной или палочковидной формы (тельца Ауэра). В пунктате костного мозга содержание гемоцитобластов достигает 2,5%. В крови гемоцитобласты обнаруживаются при остром лейкозе (гемоцитобластозе), могут обнару­живаться также при хроническом миелозе.

Миелобласт. Ряд авторов отождествляют с гемоцитобластом, другие-выделяют как следующую стадию развития. Последние рассматривают миелобласт, как клетку с ограниченными потенциями, могущую разви­ваться лишь в сторону гранулоцитов. По морфологии напоминает гемоцитобласт. Ядро нежно структуриро­ванное, содержит ядрышки, цитоплазма базофильна, в ней содержится азурофильная зернистость.

Обнаруживается в крови при острых и хронических миелозах.

Промиелоцит. Клетка, развивающаяся из миелобласта. Ядро несколько более грубой структуры, но сохраняет ядрышки, цитоплазма более базофильна, вокруг ядра имеется более светлая перинуклеарная зона. Наряду с азурофильной грануляцией может появ­ляться специальная: нейтрофильная, эозинофильная или базофильная зернистость. В зависимости от нали­чия той или иной зернистости различают промиелоциты нейтрофильные, эозинофильные и базофильные.

Обнаруживаются в крови при миелозах, при лейкемоидных реакциях.

Миелоциты. Дальнейшая стадия дифференциации миелобластов через стадию промиелоцитов. Размеры 12-20. Ядро круглое или овальное, структура хрома­тина грубая, компактная, ядрышки не обнаруживаются. Цитоплазма содержит ту или иную специфическую зер­нистость: иейтрофильную; эозинофильную, базофильную. В зависимости от вида зернистости различают миелоциты нейтрофильные, эозинофильные и базофильные. В стернальном пунктате -количество миелоцитов достигает 10-20%. В нормальных условиях дочерние миелоциты являются основными элементами, размно­жение которых пополняет запас зрелых лейкоцитов.

В крови могут обнаруживаться в виде единичных экземпляров при лейкоцитозах с гиперрегенеративным ядерным сдвигом, при лейкемоидной реакции миелоидного типа; обычно встречаются в крови при лейкемическом миелозе.

Лейкоциты юные; метамиелоциты. Недозрелые фор­мы лейкоцитов, образующиеся из миелоцитов. Ядро бо­лее рыхлое, чем у сегментированных форм, имеет изо­гнутую колбасовидную форму, форму подковы или усе­ченного S. Цитоплазма оксифильна, иногда может со­держать остатки базофилии. В зависимости от вида со­держащейся в цитоплазме зернистости различают нейтрофильные, эозинофильные и базофильные метамиело­циты.

В нормальной крови отсутствуют или встречаются в количестве не более 0,5%. Появляются при лейкоци­тозах с выраженным ядерным сдвигом, лейкемоидных реакциях миелоидного типа, при миелозах.

Из метамиелоцитов в костном мозгу путем дальней­шего созревания ядра и образования перемычек обра­зуются сегментоядерные и палочкоядерные лейкоциты.

Лейкоциты палочкоядерные. Образуются в костном мозгу из метамиелоцитов путем дальнейшего уплотне­ния их ядра, но без образования отдельных сегментов. В нормальной крови содержание 2-5%. Отличаются формой ядра, которое имеет вид изогнутой палочки или буквы S. Увеличение количества палочкоядерных нейтрофилов наблюдается при лейкоцитозах с ядерным сдвигом, лейкемоидной реакции миелоидного типа. Уве­личение эозинофильных и базофильных форм может быть характерно для миелоза.

Лейкоциты. Белые кровяные тельца. В крови имеет­ся три вида зернистых лейкоцитов (гранулоцитов): нейтрофильные, эозинофильные и базофильные лейко­циты и 2 вида незернистых лейкоцитов (агранулоцитов): лимфоциты и моноциты. Общее количество у здо­рового человека колеблется от 4,5 до 8 тысяч.

Лейкоциты нейтрофильные. Содержание в крови - 48-60% (2,2-4,2 тыс. в 1 мм3). Размеры 10-12 ц.

Ядро довольно компактное, состоит из 3-4 сегментов, соединенных мостиками того же ядерного вещества. Цитоплазма окрашивается в розовый цвет, содержит мелкую обильную зернистость, воспринимающую сине­вато-розоватый оттенок. При лейкоцитозах цитоплазма может сохранять остатки базофилии либо диффузной, либо в виде голубых гранул (так называемые тельца Деле). Более контурированными становятся эти голубые гранулы, если азур П-эозину предшествовала суправитальная окраска. При инфекциях и воспалениях нейтрофилы выполняют функцию микрофагов. Содер­жат трефоны Карреля, которые при раневом процессе могут стимулировать ход заживления (Г. К. Хрущев).

Лейкоциты эозинофильные. Нормальное содержа­ние-1-5% (100-300 клеток в 1 мм3). Клетки круп­нее нейтрофильных лейкоцитов, диаметр их до 12. Ядро часто состоит из двух сегментов, реже 3 или бо­лее. Цитоплазма слегка базофильна, содержит круп­ную, ярко окрашенную эозином зернистость, дающую положительную оксидазную и пероксидазную реакцию.

Лейкоциты базофильные. Содержание в крови 0- 1,0% (до 60 в 1 мм3). Величина от 8 до 10 ц. Ядро клеток широкое, неправильной, лопастовидпой формы. Цитоплазма содержит крупную зернистость, окраши­вающуюся метахроматически в фиолетовый, черно-синие гона.

Лимфоциты. В нормальных условиях - 27-44% (1500-2800 в 1 мм3). Клежи размером с эритроцит (7-9 р,). Ядро занимает большую часть территория клетки, имеет круглую, овальную или слегка бобовид­ную форму. Структура хроматина компактная, ядро производит впечатление глыбчатого. Цитоплазма в виде узкой каймы, окрашивается базофильно в голубой цвет; в части клеток в цитоплазме обнаруживается ок­рашивающаяся в вишневый цвет скудная грануляция - азурофильная зернистость лимфоцитов. Помимо обычно встречающихся малых лимфоцитов могут быть также, особенно в крови детей, средние лимфоциты (мезолимфоциты), а при лимфаденозах, особенно острых, - большие лимфоциты или лимфобласты.

Образуются в лимфатических узлах и селезенке. В условиях воспаления могут превращаться в макро­фаги, участвовать в образовании клеток, свойственных грануляционной ткани (А. Д. Тимофеевский).

Генез моноцитов (И. А. Кассирский и Г. А. Алексеев)

КЛЕТКИ БЕЛОЙ КРОВИ (НОРМА И ПАТОЛОГИЯ)

Моноциты. Содержание в условиях нормы -4-8% (200-550 клеток в 1 мм3). Самые крупные клетки нор­мальной крови, размером от 12 до 20. Ядро большое, рыхлое, с неравномерным распределением хроматина; форма его бобовидная, лопастовидная, подковообраз­ная, реже круглая или овальная. Довольно широкая кайма цитоплазмы, окрашивающейся менее базофильно, чем у лимфоцитов, и имеющей при окраске, по Романовскому-Гимза, дымчатый или сероватый оттенок. Мо­жет обнаруживаться мелкая азурофильная зернистость (азурофильная запыленность).

Образуются из ретикулярных и эндотелиальных кле­ток костного мозга, селезенки, печени.

Выселяясь в поздние стадии воспаления, могут пре­вращаться в макрофаги, участвовать в образовании грануляционной ткани, клеток некоторых гранулем.

Мегакариобласт. Незрелые гигантские клетки кост­ного мозга, образующиеся из гемоцитобластов. Округ­лые или овальные клетки с большим, неправильной формы ядром, более грубой, чем у гемоцитобласта, структуры. Цитоплазма в виде относительно узкой зо­ны, базофильная. Отшнуровывающиеся иногда отрост­ки цитоплазмы могут давать образование «голубым» пластинкам.

Промегакариоцит. Гигантская клетка костного мозга, из которой образуются мегакариоциты. Крупнее мега- кариобласта, ядро более грубой, нежели у первого, структуры, форма его неправильная - бухтообразная, с началом сегментации. Цитоплазма базофильная, мо­жет содержать скудную азурофильную грануляцию В результате отшнуровки частей цитоплазмы также мо­гут образовываться «голубые» пластинки.

Мегакариоцит. Гигантская клетка костного мозга, размером 40-50 ц в диаметре. Ядро неправильной фор­мы- сегментированное, кольцеподобное, либо прибли­жающееся к округлому, пикнотичному. Цитоплазма слабо базофильна, содержит мелкую или более грубую азурофильную грануляцию.

Образование кровяных пластинок (тромбоцитов) происходит путем отделения фрагментов цитоплазмы мегакарноцита, попадающих в кровь через стенки синусоидов костного мозга.

Мегакариоциты развиваются в костном мозгу из ге­моцитобластов через стадию мегакариобласта и промегакариоцита.

Тромбоциты. Кровяные (пластинки, бляшки Биццоцеро. Мелкие образования, имеющие размер 2-4

Форма округлая, овальная, звездчатая или неправиль­ная. Окрашиваются слабо базофильно, иногда в розо­вые тона. В центральной части обнаруживается мелкая или более грубая азурофильная зернистость. На обыч­ных мазках располагаются группами, реже - в виде изолированных форм. Образуются в костном мозгу из отшнуровывающихся частей протоплазмы мегакариоцитов. Общее количество в крови 200-3-50 тысяч в 1 мм3. В крови здорового человека различают следующие формы тромбоцитов.

1. Нормальные (зрелые) формы, количество которых составляет 87-98%. Форма круглая или овальная, диа­метр 2-3 р. В них различают бледно-голубую наруж­ную зону (гиаломер) и центральную (грануломер) с азурофильной зернистостью средней величины.

2. Юные формы (незрелые) имеют несколько боль­шие размеры, форму круглую или овальную. Цитоплаз­ма базофильная разной интенсивности, азурофильная грануляция мелкая и средняя, располагается чаще в центре.

3. Старые формы (0-3%) имеют круглую, оваль­ную или зубчатую форму, узкий ободок более темной цитоплазмы, обильную грубую грануляцию; могут быть вакуоли.

4. Формы раздражения (1-4,5%) имеют большие размеры, форму вытянутую, колбасовидную, хвостатую, цитоплазма голубоватая или розовая, разной величины азурофильная зернистость, рассеянная или разбросан­ная неравномерно.

5. Дегенеративные формы. В норме не встречаются. Гиаломер голубовато-фиолетовый, зернистость в виде комков или совершенно отсутствует (пустые пластин­ки), или формы в виде мелких осколков, пылинок.

Продолжительность жизни тромбоцитов около 4 дней, в последнее время с помощью Сг51 и Р32 уста­новлено, что длительность пребывания их в крови со­ставляет 7-9 дней, а при гипопластических состояниях костного мозга с тромбоцитопенией - всего до 3 дней (цит. по Г. А. Алексееву).

Резкое постарение пластинок наблюдается при ра­ках различной локализации (сдвиг вправо); процент старых форм может доходить до 22-88%, при одно­временном уменьшении зрелых форм -до 20-9%

(Т. В. Кенигсен и А. А. Коровин). Увеличение старых форм наблюдается также у пожилых лиц.

Гистиоциты. Ретикуло-эндотелиальные элементы и от­торгнувшиеся клетки эндотелия. Для обнаружения ре­комендуется взятие крови из мочки уха. Имеют различ­ную форму: вытянутую, хвостатую; ядро чаще расположен о эксцентрически, форма его овальная, круглая, или неправильная, напоминающая ядро моноцита. До­вольно широкая зона слабо-базофильной цитоплазмы, иногда содержащей азурофильные гранулы. Иногда в гистиоцитах обнаруживаются фагоцитированные клет­ки белой или красной крови, их осколки, зерна пигмен­та. Обнаруживаются в крови при септическом эндо­кардите, язвенном эндокардите, септических инфекциях, сыпном и возвратном тифе, скарлатине.

Плазматические клетки. Могут появляться, в крови при некоторых инфекционных заболеваниях (сыпном тифе, кори, краснухе, инфекционном мононуклеозе), при лейкозах, лучевой болезни, анафилактических со­стояниях. Величина от 7 до 15 ц, форма круглая или овальная. Характеризуются резко базофильной, иногда пенистой цитоплазмой, в которой могут обнаруживать­ся вакуоли; ядро компактное (хроматин может иметь структуру в виде спиц колеса), расположено в центре клеток или эксцентрично. Образуются из ретикулогистиоцитарных элементов. Имеются указания на связь плазматических клеток с образованием антител.

Метамиелоциты гигантские. Крупные формы мета­миелоцитов (юных лейкоцитов), которые могут обнару­живаться в мазках из стернальных пунктатов при ане­мии Аддисон-Бирмера и других В12-дефицитных анеми­ях. В подобных случаях появление гигантских метамие­лоцитов предшествует во времени развитию мегалобластического кроветворения и на фазе макроцитарной анемии может рассматриваться как более ранний симптом скрытого В 12-авитаминоза (А. И. Гольдберг).

Нейтрофилы гиперсегментированные. Нейтрофильные лейкоциты, ядра которых имеют увеличенное коли­чество сегментов (до 10-12). Появление гиперсегментированных форм рассматривается как признак деге­нерации. Обнаруживаются при анемии Аддисон-Бирмера, других В 12-дефицитных анемиях, при лучевой бо­лезни, септических состояниях.

Размер подобных клеток может быть увеличен (ги­гантские гиперсегментированные формы).

Токсическая зернистость нейтрофилов. Дегенератив­ная зернистость нейтрофилов. Грубая, различной вели­чины и темно-окрашивающаяся зернистость в цитоплаз­ме сегментоядерных нейтрофилов, (палочкоядерных и юных форм. Обнаруживается при окраске карболфуксинметиленовой синью или по Май-Грюневальд-Гимза.

Появлению токсической зернистости в нейтрофилах придается диагностическое и прогностическое значение. Она обнаруживается при гнойно-септических заболева­ниях, крупозной пневмонии, дизентерии, оспе, ряде вос­палительных процессов, лейкемоидных реакциях миело­идного типа. Токсическая зернистость может появляться рано, еще до развития ядерного сдвига, и указывает на тяжесть заболевания, иногда на плохой прогноз.

Природа токсической зернистости связана с резуль­татом физико-химических изменений белков цитоплазмы и коагуляции белка под влиянием инфекционного (ток­сического) агента (И. А. Кассирский и Г. А. Алек­сеев).

Вакуолизация цитоплазмы нейтрофилов. Появление вакуоль в цитоплазме может наблюдаться при септиче­ских состояниях, пневмонии, дифтерии, дизентерии и других инфекциях, при лучевой болезни. Рассматрива­ется как признак дегенерации.

Тельца Деле. Тельца (Князькова-Деле. Обнаружи­ваются в нейтрофилах при некоторых инфекционных лейкоцитозах (скарлатина, пневмония, дифтерия и др.).

Представляют собой при окраске азур II-эозином оди­ночные, реже 2-3 голубых тельца, расположенных в цитоплазме нейтрофилов между специфической нейтрофильной зернистостью. Могут обнаруживаться и в лейкоцитах лягушки. По данным нашей кафедры, пред­ставляют собой коагулированные остатки базофильной цитоплазмы незрелых предстадий лейкоцитов (М. А. Верховская).

Тени Боткина-Гумпрехта. Неправильной формы об­разования, окрашивающиеся в красно-фиолетовые тона, образующиеся из разрушенных и раздавленных при изготовлении мазка крови клеток. Особенно часто тени Боткина-Гумпрехта (формы растворения) обнаружи­ваются при лимфаденозах.

Пельгеровская семейная аномалия лейкоцитов. Се­мейная (наследственная) форма аномалии ядра лейко­цитов, описанная впервые Пельгером (1928), характе­ризуется асегментацией и бисепментацней ядра гранулоцитов. Особенностью ядра (является комковатость, крупнопикнотическая его структура, что отличает такие лейкоциты от незрелых метамиелоцитов при ядерном сдвиге влево.

Дается следующая номенклатура зрелых пельгеровских нейтрофилов: Г) несегментированные, с ядром в виде эллипса, боба, почки, земляного ореха, гимна­стической гири; 2) бисегментированные формы (с ядра­ми в виде пенсне); 3) круглоядерные (с плотным яд­ром); 4) палочкоядерные, с ядром в виде толстой короткой палочки; 5) трисегментированные (Г. А. Алексеев).

Аномалия диагносцируется случайно. Число лейко­цитов у носителей нормально, пониженной сопротивляе­мости к инфекциям не наблюдается. При гетерозигот­ной передаче отмечается у 50% потомков. У гомозиготов ядра зрелых гранулоцитов имеют преимущественно круглую форму. Предполагается, что в основе феномена гипосегментации лежит генетически наследуемый дефи­цит энзимного фактора, ответственного за развитие нормальной ядерной дифференциации (Г. А. Алексеев).

Половой хроматин. Впервые описан в ядрах нервных клеток кошек Барром и Бертрамом (1949) в виде тем­ных хроматиновых узелков, прилегающих к оболочке ядра. В 1955 году Моор и Барр предложили буккальный тест для определения полового хроматина в эпителии слизистой щеки, полученном путем соскоба. Девидсон и Смит (1954) нашли половой хроматин в нейтрофильных лейкоцитах крови.

Половой хроматин сегментированных нейтрофилов представляет собой небольшие отростки, напоминающие барабанные палочки (различают темноокрашенную го­ловку, соединенную с одним из сегментов ядра тонкой нитью). Кроме барабанных палочек (тип А), типичным для полового хроматина женщины считаются образо­вания, имеющие форму сидящих на ядерном сегменте узелков или капель, связанных с сегментом толстой шейкой, или плотно сидящих на нем (тип В). Ядерные придатки в виде столбиков, нитей, крючков (тип С), а также кольцевые формы, напоминающие теннисные ракетки (тип Д), не считаются характерными для поло­вого хроматина женщин и могут встречаться в нейтро­филах крови у мужчин. В среднем один хроматиновый придаток встречается на каждые 38 лейкоцитов женщи­ны, что может быть использовано для диагностики пола по мазкам крови.

Теперь считается, что половой хроматин определяет­ся числом Х-хромосом в ядрах клеток. У мужских особей имеется одна X и одна У-хромосома, поэтому хроматиновое тельце отсутствует. Ядра клеток жен­ских организмов содержат 2 Х-хромосомы и могут об­наруживать один хроматиновый (половой) придаток. Половой хроматиновый придаток представляет собой гетерохроматиновую массу одной Х-хромосомы, вторая же неразличима в покоящейся массе интеркинетического ядра. В случаях, когда количество Х-хромосом увели­чено, а также при умножении набора хромосом (полип­лоидия) количество хроматиновых телец в ядре разных тканей равно числу Х-хромосом без одного.

Что такое патология крови?

Патология крови может быть вызвана различными наследственными и приобретенными заболеваниями. Это зависит от множества факторов.

Механизмы появления патологий крови

Системы крови формируются еще на эмбриональной стадии развития человека. Самыми первыми клетками считаются стволовые. А из них уже далее формируются другие клетки. Они могут проходить дифференцирование в любые клетки на различных стадиях. Вся схема преобразования разбита на 6 этапов, где первым этапом считается стволовая клетка, а заключительным этапом – различные типы клеток организма человека, в том числе кровяные клетки.

Пока клетка находится в первичном положении, степень ее развития создают Т-лимфоциты. Когда клетка переходит на третий этап, она становится более восприимчивой к различным специальным регуляторам гуморального типа (тромбопоэтинам, лейкопоэтинам, эритропоэтинам и прочим), а также ингибиторам, которые им соответствуют. Данные вещества, которые являются регуляторами, могут формироваться в разных клетках и тканях. К примеру, эритропоэтин формируется желудком, почками и эритроцитами. Когда у человека начинается гипоксия, то количество продукции, которая вырабатывается эритропоэтинами, начинает возрастать. Когда зрелые клетки – лейкоциты и эритроциты – начинают распадаться, то выделяются лейкопоэтин и эритропоэтин соответственно. Они вызывают процесс формирования новых клеток. Ингибиторы располагаются в селезенке и печени.

Далее в действие вступают эндокринная и нервная системы. Они влияют на клетки как на третьем этапе, так и при их дифференцировании. Вот почему еще не созревшие клеточные формирования уже могут быть восприимчивыми к различным типам регуляторов. К примеру, катехоламины и кортикостероиды, которые вырабатываются надпочечниками, способны изменять эритропоэз за счет увеличения количества эритропоэзной продукции почками.

Кроме того, пищевая система органов тоже участвует в этом процессе. Например, двенадцатиперстная кишка, тощая кишка высасывают железо при необходимости. Слизистая оболочка желудка имеет ряд факторов, которые регулируют этот процесс. Кроме того, здесь присутствует гликопротеин. Он отвечает за всасывание витамина В12. Если не хватает данного витамина, то разделение эритроцитов переходит на этап эмбриона, кроме того, тромбоциты и нейтрофилы вырабатываются в меньшем количестве и появляются изменения в них. Все старые клетки, некачественные клеточные образования эритроцитного типа разрушаются в селезенке и печени.

Процесс гемопоэза может изменяться под действием различных факторов, которые вызываются как различными заболеваниями, так и другими проблемами, в том числе и ядами.

Патология красной крови

Под действием различных факторов может нарушаться процесс эритропоэза, что приводит развитию синдромов анемии и эритроцитоза. Эти явления известны как патологии красной крови.

Эритроцитоз – это процесс, при котором увеличивается количество клеток эритроцитов на единицу объема кровяной жидкости. Эритроцитоз может быть как истинным, так и ложным.

Истинный еще называют абсолютным, т. к. при этом процессе количество клеток начинает увеличиваться не только на единицу объема в сосуде, но и в русле кровеносного сосуда в общем. Это может развиваться в тех случаях, когда количество клеток растет из-за усиленной их выработки, а также в тех ситуациях, когда рост их количества остается на естественном уровне, но скорость их распада начинает замедляться, что и приводит к скапливанию эритроцитов в кровяной жидкости. Эти явления могут вызывать и некоторые яды и вредные элементы. Существует и другое объяснение.

В некоторых случаях эритропоэз усиливается из-за того, что наблюдается перевес эритропоэтина над соответствующими видами ингибиторов. Такое явление наблюдается тогда, когда человек длительное время пребывает в высокогорной территории, при некоторых болезнях, которые вызывают гипоксию. Тогда заболевание имеет компенсаторные характеристики. Кроме того, к возникновению эритроцитоза приводит уменьшение разрушительной активности клеток эритроцитов. Такое может возникать и в тех случаях, когда у клеток начинаются проблемы с восприимчивостью к регуляторам. Например, такое можно наблюдать при гемобластозе, при заболеваниях опухолевого характера.

Ложный эритроцитоз называют еще относительным, т. к. увеличивается количество эритроцитов в объеме только за счет того, что они сгущаются, а эритропоэз при этом не происходит. Факторы, вызывающие подобные явления, возникают при обезвоживании и заболеваниях, которые его вызывают.

Анемия тоже является одним из синдромов при патологиях эритроцитов. Это заболевание имеет клинико-гематологические характеристики. У пациента в крови снижается количество гемоглобина. Кроме того, снижается количество эритроцитов, появляются проблемы с эритропоэзом. Это заболевание проявляется, главным образом, как кислородное голодание различных клеток, тканей и органов. У человека появляются бледность, головные боли, шум в ушах, обмороки, слабость и прочие симптомы.

Это может быть сформировано из-за действия различных ядов и первичных болезней. Чтобы установить причины, требуется проведение различных анализов, в том числе установление изменений в эритропоэзе. Анемия может возникать из-за того, что есть нарушения в составе крови, вызванные большими ее потерями. В таком случае она называется постгеморрагической. Она имеет острую и хроническую формы. Анемия может быть вызвана гемолизом. Здесь существуют и другие причины. К примеру, это может быть генетическое изменение эритроцитов. Причина может скрываться в иммунологических процессах, а также в влиянии различных физико-химических и биологических факторов на эритроциты. Последний тип анемии может быть связан с проблемами в эритропоэзе. Причины могут скрываться в уменьшении эритроцитов, в снижении формирования гемоглобина, в нарушениях разделения клеток на классы.

Патология белой крови

Изменения в количестве лейкоцитов известны как патологии белой крови. Лейкоцитоз – это процесс, при котором увеличивается количество зрелых лейкоцитов. Но легко спутать это явление с лейкемоидной реакцией, когда количество лейкоцитов увеличивается за счет роста количества незрелых лимфоцитов, лейкоцитов и моноцитов.

Различные микроорганизмы и продукты, которые они вырабатывают, могут влиять на продукцию, которую формируют фагоциты лейкопоэтинов.

Лейкоцитоз может иметь вид нейтрофильного. В таком случае у пациента начинаются воспалительные процессы с гнойными образованиями. Кроме того, лейкоцитоз способен приобретать эозинофильную форму, когда у пациента развиваются симптомы аллергии. При базофильном лейкоцитозе развивается симптоматика заболеваний крови. При моноцитозе заметны характеристики острых форм вирусных болезней, а при лимфоцитозе появляются проблемы, которые вызывают заболевания крови системного характера.

При лейкопении количество эритроцитов начинает уменьшаться и составляет параметр ниже нормы.

Ценность этого параметра для диагностики других заболеваний незначительная, т. к. она только способна отражать тяжесть другого заболевания.

Важно понимать, что, если угнетается работа ростков крови всех типов, то возможен токсический характер причин заболевания, а если уменьшается количество лифмоцитов и лейкоцитов сугубо избирательно, то, скорее всего, причина в иммунной реакции человека. Эти факты очень важны для диагностики заболевания и выявления его причин. Иммунный тип возникает из-за того, что формируются антитела к лейкоцитам из-за того, что длительное время использовались препараты. Токсический тип возникает из-за действия цитостатиков.

Патологические клетки крови это

Клинический анализ крови - как его расшифровать и понять

Гормоны. Когда что сдавать

Эстрогены Общее собирательное название подкласса стероидных гормонов, производимых в основном фолликулярным аппаратом яичников у женщин. В небольших количествах эстрогены производятся также яичками у мужчин и корой надпочечников у обоих полов. Относятся группе женских половых гормонов. В эту группу принято включать три основных гормона - эстрадиол, эстрон, эстриол. Наиболее активен гормон эстрадиол, но при беременности главное значение приобретает эстриол. Снижение эстриола при беременности может быть признаком патологии плода. Повышение уровня эстрогенов может быть при опухолях яичников или надпочечников. Может проявляться маточными.

Девочки, возьмите на заметку!

ПРИЧИНЫ ОТСУТСТВИЯ ИМПЛАНТАЦИИ: Многие женщины не имеют проблем с гормональным фоном, овуляцией, наличием инфекций, проходимостью труб, но беременность все же не наступает… Причиной этого, могут служить проблемы с имплантацией плода. Они же могут послужить причиной неудачного ЭКО. Известны 4 фактора, влияющие на имплантацию: Иммунные факторы Иммунные факторы можно разделить на две категории: Отсутствие или нарушение механизмов адаптации иммунной системы к беременности. Наличие антител к клеткам или молекулам, которые важны для развития беременности. Рассмотрим по очереди эти механизмы. Одной из основных.

О чем расскажут клетки крови?

В крови содержатся различные типы клеток, выполняющих совершенно разные функции - от переноса кислорода до выработки защитного иммунитета. Для того, чтобы понимать, изменения формулы крови при различных заболеваниях, необходимо знать, какие функции выполняет каждый тип клеток. Некоторые из этих клеток никогда в норме не покидают кровеносное русло, другие же для исполнения своего предназначения выходят в другие ткани организма, в которых обнаруживается воспаление или повреждение.

ЭФИРНЫЕ МАСЛА И АНТИБИОТИКИ

ЭФИРНЫЕ МАСЛА И АНТИБИОТИКИ Агрессивность эфирных масел по отношению к микробам сочетается с их совершенной безвредностью для организма человека. Это очень актуально в наши дни и связано с широким применением антибиотиков. Всем памятно одно из открытий XX века - пенициллин, спасший множество жизней. С этого открытия началась эра антибиотиков. Если бы человек не начал целенаправленно разводить драгоценную кистевидную плесень, из которой оказалось возможным получить враждебное бактериям вещество, тех количеств, в которых она развивается в природе, было бы совершенно недостаточно. Нужно.

Норма гормонов у женщин

Большинство половых гормонов женщины (эстрогены, прогестерон), которые в основном влияют на циклические процессы, синтезируются в яичниках. Однако высший контроль над этими железами внутренней секреции имеет гипофиз. Его клетки гонадотрофы вырабатывают гонадотропные гормоны. К их числу относят ФСГ, пролактин, ЛГ.Все они напрямую влияют на репродуктивную функцию женщины и ее возможность продолжить род. С их помощью осуществляется тонкая и точная регуляция менструального цикла.

Совместная покупка средств личной гигиены по оптовым ценам.

Дневные, ночные, ежедневные женские гигиенические прокладки Anion-Relax AIRIZ. ЦЕНА 1550 руб. Цена за кейс. Кейса хватает на 2.5 месяца. Женские гигиенические прокладки Тяньши являются плодом современной технологии двойного внутреннего слоя, которая способствует воздействию активного кислорода и отрицательно заряженных ионов. Анионы - незаменимый помощник в укреплении здоровья, «воздушный витамин», уничтожающий вирусы с положительно заряженными электронами, проникающий в клетки микробов и уничтожающий их. Женские гигиенические прокладки Тяньши имеют внутренний слой, который высвобождает более 6100 отрицательных ионов на 1 см3. Благодаря специальной формуле.

Роль фолатов в развитии осложнений беременности при полиморфизме MTHFR

Статья из журнала «ЭФФЕКТИВНАЯ ФАРМАКОТЕРАПИЯ. Акушерство и гинекология», 2014, анализирует роль фолиевой кислоты при беременности, а также негативные последствия дефицита и переизбытка фолатов в период гестации. Приведены результаты наблюдения за беременными с полиморфизмом гена MTHFR, которые принимали витаминно-минеральный комплекс, содержащий активную форму фолатов - метафолин. Применение комплекса позволило качественно и количественно нормализовать гематологические показатели, а также значительно снизить риск осложнений

Причины неудачной имплантации плода и методы их диагностики.

Многие женщины не имеют проблем с гормональным фоном, овуляцией, наличием инфекций, проходимостью труб, но беременность все же не наступает. Причиной этого, могут служить проблемы с имплантацией плода. Они же могут послужить причиной неудачного ЭКО. Известны 4 фактора, влияющие на имплантацию: Иммунные факторы Иммунные факторы можно разделить на две категории: Отсутствие или нарушение механизмов адаптации иммунной системы к беременности. Наличие антител к клеткам или молекулам, которые важны для развития беременности. Рассмотрим по очереди эти механизмы. Одной из основных функций иммунной системы.

Общий анализ крови

Общий анализ крови у детей. Норма и расшифровка результатов

Тремор у новорожденных - причины, симптомы, лечение, последствия

Нам пришлось пережить этот ужас. После рождения моего Ванечку забрали у меня через сутки совместного прибывания, в детское отделение (благо оно было всего лишь этажом ниже) именно из-за тремора. Причем мне толком ничего не объяснили, а просто сказали что надо понаблюдать, что я тогда пережила. Ну сейчас не об этом, кому интересно могут почитать у меня в дневнике рождение Ванечки.Тремер у нас был где-то до 4-х месяцев, первые два месяца очень сильно, мы плохо спали и постоянно плакали, я не.

Про гормоны

Гормоны (греч. Ορμ?νη) - сигнальные химические вещества, выделяемые эндокринными железами непосредственно в кровь и оказывающие сложное и многогранное воздействие на организм в целом либо на определённые органы и ткани-мишени. Гормоны служат

ЧТО ДЕЛАТЬ, ЕСЛИ У РЕБЕНКА ПОЯВИЛИСЬ СИНЯКИ ПОД ГЛАЗАМИ?

Синяки под глазами у ребенка являются причиной множества тревог и опасений его родителей. Что это - обычное переутомление или признак серьезного заболевания? Почему возникают синяки под глазами и что делать, если они вдруг появились?

Оптимизация ведения женщин с синдромом поликистозных яичников, метаболическим синдромом и тромбофили

Оптимизация ведения женщин с синдромом поликистозных яичников, метаболическим синдромом и тромбофилией Т.Б. Пшеничникова, Е.Б. Пшеничникова ММА имени И.М. Сеченова На сегодняшний день синдром поликистозных яичников (СПКЯ) остается одной из самых непознанных гинекологических проблем. Синдром поликистозных яичников - наиболее частая эндокринная патология, встречающаяся у 15% женщин репродуктивного возраста, у 73% женщин с ановуляторным бесплодием и у 85% женщин с гирсутизмом. Подавляющее большинство исследователей считают, что СПКЯ - гетерогенная патология, характеризующаяся ожирением, хронической ановуляцией, гиперандрогенией, нарушением гонадотропной функции, увеличением размеров яичников и.

Неразвивающаяся беременность: вопросы этиологии и патогенеза

И.А.Агаркова. Неразвивающаяся беременность: вопросы этиологии и патогенеза. Гинекология. 2010; 05:Невынашивание беременности - проблема, значение которой не только не уменьшается со временем, но, пожалуй, даже возрастает. Население Европы вообще и России в частности достаточно быстро стареет. К 2015 г. 46% женщин будут старше 45 лет . При этом если в высокоразвитых странах возрастная разница между средней продолжительностью жизни мужчин и женщин составляет 4-5 лет, то в России в последние годылет. Таким образом, Россия медленно превращается.

Эндометриоз – лечение возможно

Недавно узнала, что такое эндометриоз, и почему он появляется у женщин. Симптомы заболевания показались мне уж больно знакомыми, и я не ошиблась. Да уж, заболевание не из приятных, мало того в будущем может способствовать формированию раковых клеток и онкологическим диагнозам. Так что лучше всего на эту проблему реагировать своевременно.

Степень зрелости плаценты 2-3 на 31нед.ВЗРП 1. Стационар.

Делала УЗи 23.03.2015г, (31,2недель) по УЗи малышка (. девочка) наша соответствует сроку) но вот степень зрелости плаценты у нас уже 2-3. Врач на УЗИ засыпала пришлось подтолкнуть ее раз 5 чтоб досмотрела. Еще в заключении УЗИ написано расширение МВП плаценты, раннее созревание плаценты, ВЗРП1 степени. Что это за такое?.Вот и незнаю, переживать или как?! К врачу на явку надо было бы 30.03 но сказали УЗИ сразу показать, вот показала вчера 24.03 дали направление в стационар.Сегодня 25.03 пойду записываться с 12 до.

Чтобы такое съесть, чтобы похудеть?

Или хотя бы не поправиться? Извечный женский вопрос:))) Каждая девушка задается им перманентно или с различной периодичностью во времени. А я знаю ответ!Как известно, в каждой шутке лишь доля шутки, все остальное - правда:))))Под невиданный аттракцион великодушия от айхерб и скидки на бренд Now Foods:)Клетчатка! Любимица диетологов, а с недавних пор и моя:))О пользе клетчатки. Сто бед - один ответ!

Необходимые анализы для ЭКО с объяснением (из инета)

про беременность и гемоглобин

Во многих странах все беременные женщины регулярно сдают анализ крови на содержание гемоглобина (пигмента, содержащегося в эритроцитах). Широко распространено мнение о том, что это - эффективный способ выявить анемию и дефицит железа. На самом же деле этим анализом недостаток железа определить нельзя, ведь объем крови в течение беременности значительно возрастает, так что концентрация гемоглобина отражает, прежде всего, степень разведения крови вследствие плацентарной активности. Изучая это явление, британские ученые проанализировали данные более 150 тысяч беременных женщин. Это масштабное исследование показало, что.

полимедэл-чудо или развод?

Позвонила маме,узнала,что та думает купить сие чудо,якобы от всех болезней =) краткое описание из интернета(все копировать не стала):

Препараты при задержки речи

Краткий обзор ноотропных и других препаратов, применяемых при лечении речевых нарушениях.НАЗНАЧАЕТ ПРЕПАРАТЫ ТОЛЬКО ВРАЧ! Не занимайтесь самолечением, это опасно! Ноотропы - это вещества, оказывающие специфическое позитивное влияние на высшие интегративные функции мозга. Они улучшают умственную деятельность, стимулируют когнитивные (познавательные) функции, облегчают процесс обучения, улучшают память, стимулируют интеллектуальную деятельность. Энцефабол - препарат, который улучшает патологически сниженные обменные процессы в тканях головного мозга, снижает вязкость крови и улучшает кровоток. Улучшает кровообращение в ишемизированных участках мозга, увеличивает их оксигенацию (насыщает кислородом), усиливает обмен.

Медицинская учебная литература

Учебная медицинская литература, онлайн-библиотека для учащихся в ВУЗах и для медицинских работников

Болезни системы крови

ФУНКЦИИ СИСТЕМЫ КРОВИ

  • органы и ткани кроветворения, или гемопоэза, в которых созревают форменные элементы крови;
  • периферическую кровь, которая включает циркулирующую и депонированную в органах и тканях фракции;
  • органы кроворазрушения;

Система крови является внутренней средой организма и одной из его интегрирующих систем. Кровь выполняет многочисленные функции - дыхания, обмена веществ, экскреции, терморегуляции, поддержания водно-электролитного баланса. Она осуществляет защитные и регуляторные функции благодаря наличию в ней фагоцитов, различных антител, биологически активных веществ, гормонов. На процессы кроветворения влияют многие факторы. Важное значение имеют особые вещества, регулирующие пролиферацию и созревание клеток крови, - гемопоэтины, но общее регулирующее влияние оказывает нервная система. Все многочисленные функции крови направлены на поддержание гомеостаза.

Картина периферической крови и костного мозга позволяет судить о функциях многих систем организма. При этом наиболее полное представление о состоянии самой кроветворной системы можно получить, лишь исследуя костный мозг. Для этого специальной иглой (трепаном) проводят пункцию грудины или гребня подвздошной кости и получают костномозговую ткань, которую затем исследуют под микроскопом.

МОРФОЛОГИЯ КРОВЕТВОРЕНИЯ

Все форменные элементы крови в нормальных условиях образуются в красном костном мозге плоских костей - грудины, ребер, костей таза, позвонков. В трубчатых костях взрослого человека костный мозг представлен в основном жировой тканью и имеет желтый цвет. У детей в трубчатых костях происходит кроветворение, поэтому костный мозг красный.

Морфогенез кроветворения.

Родоначальником всех клеток крови является стволовая кроветворная клетка костного мозга, которая трансформируется в клетки-предшественники, морфологически неотличимые друг от друга, но дающие начало миело- и лим-фопоэзу (рис. 42). Эти процессы регулируются гемопоэтинами, среди которых выделяют эритро-, лейко- и тромбоцитопоэтины. В зависимости от преобладания тех или иных поэтинов усиливается миелопоэз и клетки-предшественники начинают трансформироваться в бластные формы миелоцитарного, эритроцитарного и тромбоцитарного ростков крови. При стимуляции лимфопоэза начинается созревание лимфоцитарного, а также моноцитарного ростков крови. Таким образом происходит развитие зрелых клеточных форм - Т- и В-лимфоцитов, моноцитов, базофилов, эозинофилов, нейтрофилов, эритроцитов и тромбоцитов.

На разных этапах гемопоэза в результате патологических воздействий могут возникать нарушения созревания кроветворных клеток и развиваются болезни крови. Кроме того, на многие патологические процессы, возникающие в организме, система крови реагирует изменением своего клеточного состава и других параметров.

НАРУШЕНИЯ ОБЪЕМА ЦИРКУЛИРУЮЩЕЙ КРОВИ

Рис. 42. Схема кроветворения (по И. Л. Черткову и А. И. Воробьеву).

При различных болезнях и патологических процессах может меняться общий объем крови, а также соотношение ее форменных элементов и плазмы. Выделяют 2 основные группы нарушений объема крови:

  • гиперволемии - состояния, характеризующиеся увеличением общего объема крови и. обычно, изменением гематокрита;
  • гиповолемии - состояния, характеризующиеся уменьшением общего объема крови и сочетающегося со снижением или увеличением гематокрита.

ГИПЕРВОЛЕМИИ

  • Нормоцитемическая гиперволемия- состояние, проявляющееся эквивалентным увеличением объема форменных элементов и жидкой части циркулирующей крови. Гематокрит остается в пределах нормы. Такое состояние возникает, например. при переливании большого количества (не менее 2 л) крови.
  • Олигоцитемическая гиперволемия - состояние, характеризующееся увеличением общего объема крови вследствие возрастания главным образом объема плазмы. Показатель гематокрита при этом ниже нормы. Такая гиперволемия появляется при введении большого количества физиологического раствора или кровезаменителей, а также при недостаточности выделительной функции почек.
  • Полицитемическая гиперволемия - состояние, проявляющееся увеличением общего объема крови вследствие преимущественного повышения числа ее форменных элементов, в первую очередь эритроцитов. При этом гематокрит становится выше нормы. Наиболее часто такое явление наблюдается при длительной гипоксии, стимулирующей выход эритроцитов из костного мозга в кровь, например у жителей высокогорья, на определенных этапах патогенеза ряда заболеваний легких и сердца.

ГИПОВОЛЕМИИ

  • Нормоцитемическая гиповолемия- состояние, проявляющееся уменьшением общего объема крови при сохранении гематокрита в пределах нормы, что наблюдается сразу после кровопотери.
  • Олигоцитемическая гиповолемия характеризуется уменьшением общего объема крови с преимущественным снижением количества ее форменных элементов. Гематокрит при этом ниже нормы. Наблюдается также после кровопотери, но в более поздние сроки, когда из межклеточного пространства в сосуды поступает тканевая жидкость. В этом случае объем циркулирующей крови начинает возрастать, а количество эритроцитов остается на низком уровне.
  • Полицитемическая гиповолемия - состояние, при котором снижение общего объема крови обусловлено в основном уменьшением объема плазмы. Показатель гематокрита при этом выше нормы. Такое сгущение крови наблюдается при потере жидкости после обширных ожогов, при гипертермии с массивным потоотделением, холере, характеризующейся неукротимой рвотой и поносом. Сгущение крови способствует также образованию тромбов, а уменьшение общего объема крови нередко приводит к сердечной недостаточности.

ПАТОЛОГИЯ СИСТЕМЫ ЭРИТРОЦИТОВ

Анемия, или малокровие, - снижение общего количества гемоглобина в организме и, как правило, гематокрита. В большинстве случаев анемии сопровождаются эритропенией - снижением количества эритроцитов в единице объема крови ниже нормы (менее 3 10 9 /л у женщин и 4 10 9 /л у мужчин). Исключением являются железодефицитная анемия и талассемия, при которых количество эритроцитов может быть нормальным или даже увеличенным.

Значение анемии для организма определяется прежде всего уменьшением кислородной емкости крови и развитием гипоксии, с которой связаны основные симптомы расстройств жизнедеятельности этих больных.

  • вследствие кровопотери - постгеморрагические;
  • вследствие нарушенного кровообразования - дефицитные;
  • вследствие повышенного кроворазрушения - гемолитические.

По течению анемии могут быть острыми и хроническими.

По изменениям структуры эритроцитов при анемиях выделяют:

  • анизоцитоз, который характеризуется разной формой эритроцитов;
  • пойкилоцитоз - характеризуется разными размерами эритроцитов.

При анемиях изменяется цветной показатель - содержание гемоглобина в эритроцитах, который в норме равен I. При анемиях он может быть:

  • больше 1 (гиперхромная анемия);
  • меньше 1 (гипохромная анемия).

АНЕМИИ ВСЛЕДСТВИЕ КРОВОПОТЕРИ (ПОСТГЕМОРРАГИЧЕСКИЕ)

Эти анемии всегда вторичны, так как возникают в результате болезней или ранений.

Острая постгеморрагическая анемия возникает при острой кровопотере. например из сосудов дна язвы желудка, при разрыве маточной трубы в случае трубной беременности, из легочных каверн при туберкулезе и т. п. (внутреннее кровотечение) или из поврежденных сосудов при ранениях конечностей, шеи и других частей тела (наружное кровотечение).

Механизмы развития острых постгеморрагических состояний. На начальном этапе кровопотери в большей или меньшей мере снижается объем циркулирующей крови и развивается гиповолемия. В связи с этим уменьшается приток венозной крови к сердцу. его ударный и минутный выброс. Это обусловливает падение уровня артериального давления и ослабление сердечной деятельности. В результате уменьшается транспорт кислорода и субстратов метаболизма из крови к клеткам, а от последних - углекислого газа и отработанных продуктов обмена веществ. Развивается гипоксия, которая во многом определяет исход кровопотери. Крайняя степень указанных расстройств в организме обозначается как постгеморратический шок.

Проявлениями острой анемии являются бледность кожных покровов и малокровие внутренних органов. В связи с резким уменьшением оксигенации тканей повышается выработка эритропоэтина, стимулирующего эритропоэз. В костном мозге при этом происходит значительное увеличение числа клеток эритроидного ряда и костный мозг приобретает малиновый цвет. В селезенке, лимфатических узлах, периваскулярной ткани появляются очаги внекостномозгового, или экстрамедуллярного, кроветворения. Нормализация показателей периферической крови после восполнения кровопотери наступает примерно через 48-72 ч.

Нарушение гемодинамики и снижение интенсивности биологического окисления в клетках обусловливают включение адаптивных механизмов:

  • активацию тромбообразования;
  • реакции сердечно-сосудистой компенсации кровопотери в виде сужения просвета мелких сосудов и выброса крови из депо;
  • повышение сердечного выброса;
  • поддержание объема циркулирующей крови за счет поступления в сосуды жидкости из интерстиция.

Хроническая постгеморрагическая анемия возникает при значительной кровопотере вследствие повторяющихся кровотечений, например из геморроидальных вен, при маточных кровотечениях и т. п. Такая кровопотеря приводит к хронической гипоксии тканей и нарушению в них обмена веществ.

Хроническая гипоксия способствует развитию жировой дистрофии паренхиматозных органов. Желтый костный мозг трансформируется в красный, так как усиливаются эритро-и миелопоэз. В печени, селезенке, лимфатических узлах могут появляться очаги экстрамедуллярного кроветворения. Вместе с тем при длительно повторяющихся и выраженных ковопотерях может наступить гипо- и аплазия кроветворной ткани, что указывает на истощение гемопоэза.

АНЕМИИ ВСЛЕДСТВИЕ НАРУШЕННОГО КРОВООБРАЗОВАНИЯ (ДЕФИЦИТНЫЕ)

Эти анемии являются следствием недостатка ряда веществ, необходимых для нормального гемопоэза - железа, витамина B 12 , фолиевой кислоты и др. Среди них наибольшее значение имеет злокачественная анемия Аддисона-Бирмера. в основе которой лежит дефицит витамина В 12 и фолиевой кислоты.

В 12 -дефицитная, или фолиеводефицитная, анемия. Этиология анемии связана с дефицитом витамина В 12 и фолиевой кислоты, которая регулирует нормальный гемопоэз в костном мозге. Однако для активации фолиевой кислоты необходимо, чтобы поступающий с пищей витамин В 12 (внешний фактор) соединился с образующимся в желудке белком - гастромукопротеином (внутренний фактор) , который вырабатывается добавочными клетками желез слизистой оболочки желудка. Вместе они образуют комплекс, который называется антианемическим фактором. Затем этот комплекс поступает в печень и активирует фолиевую кислоту, а та в свою очередь стимулирует эритропоэз по эритробластическому типу. Если же развивается аутоиммунный гастрит и появляются антитела к добавочным клеткам или гастромукопротеину, которые уничтожают эти клетки или внутренний фактор, то в слизистой оболочке желудка не всасывается витамин В 12 и не образуется гастромукопротеин. Такая же ситуация возникает при высокой резекции желудка по поводу опухоли или язвенного процесса.

В результате атрофии слизистой оболочки желудка аутоиммунного характера возникает дефицит фолиевой кислоты и витамина В 12 . Нарушается эритропоэз и вместо эритроцитов образуются их предшественники - крупные мегалобласты, которые появляются в периферической крови. Однако мегалобласты быстро разрушаются, развиваются анемия и общий гемосидероз. Кроме того, при дефиците витамина В 12 нарушается образование миелина в оболочках нервных стволов, что нарушает их функцию.

У больных отмечаются бледность кожных покровов, водянистая кровь, точечные кровоизлияния, из-за атрофии слизистой оболочки языка он приобретает малиновую окраску (гунтеровский глоссит), характерны атрофический гастрит, уплотнение и увеличение печени из-за жировой дистрофии и гемосидероза, связанных с гипоксией и с усиленным разрушением мегалобластов. В спинном мозге - распад осевых цилиндров в задних и боковых столбах и очаги размягчения ткани мозга (фуникулярный миелоз), что сопровождается тяжелой неврологической симптоматикой. Костный мозг плоских и трубчатых костей красный, напоминает малиновое желе. В селезенке и лимфатических узлах очаги экстрамедуллярного кроветворения.

Течение заболевания прогрессирующее, с периодами ремиссии и обострения. Лечение анемии препаратами фолиевой кислоты и витамина B 12 привело к тому, что больные перестали умирать от этого заболевания.

АНЕМИИ ВСЛЕДСТВИЕ ПОВЫШЕННОГО КРОВОРАЗРУШЕНИЯ - ГЕМОЛИТИЧЕСКИЕ

Для этих анемий характерно преобладание процесса разрушения эритроцитов (гемолиз) над их образованием. Продолжительность жизни эритроцитов при этом снижена и не превышает 90- 100 дней.

Виды гемолитических анемий

По происхождению гемолитические анемии делят на приобретенные (вторичные) и врожденные или наследственные.

Приобретенные гемолитические анемии могут быть вызваны многочисленными факторами. Этиология этих анемий связана с действием факторов физического, химического и биологического, в том числе аутоиммунного, характера, особенно при дефиците веществ, стабилизирующих мембраны эритроцитов, например а-токоферола. Наибольшее значение имеют так называемые гемолитические яды химического (соединения мышьяка, свинца, фосфора и др.) и биологического происхождения. Среди последних - яды грибов, различные токсичные вещества, образующиеся в организме при тяжелых ожогах, инфекционные болезни (например, малярия, возвратный тиф), переливание крови, несовместимой по группе или резус-фактору.

Гемолиз эритроцитов может происходить внутри сосудов и за их пределами. При этом распадается гемоглобин и из гема синтезируются два пигмента - гемосидерин и билирубин. Поэтому гемолитические анемии обычно сопровождаются развитием общего гемосидероза и желтухи. Кроме того, эритропения и распад гемоглобина приводят к появлению выраженной гипоксии, сопровождающейся жировой дистрофией паренхиматозных органов.

Морфология гемолитических анемий характеризуется развитием гиперпластических процессов в костном мозге, в связи с чем он приобретает малиновый цвет, появлением очагов экстрамедуллярного кроветворения, выраженной желтухой кожных покровов и внутренних органов, гемосидерозом и жировой дистрофией печени, сердца и почек.

Гемолитическая болезнь новорожденных является примером приобретенных гемолитических анемий и имеет большое значение в акушерской и педиатрической практике. В ее основе лежит иммунный конфликт между матерью и плодом по резус-фактору, который обладает антигенными свойствами. Этот фактор впервые был обнаружен в эритроцитах обезьян макак резусов и имеется у 80-85 % людей. Если мать резус-отрицательна, т. е. не имеет резус-фактора, а плод резус-положительный, то в организме матери образуются антитела против эритроцитов плода и у него возникает внутрисосудистый гемолиз эритроцитов.

Рис. 43. Серповидно-клеточная анемия. Эритроциты серповидной формы. Электронограмма.

При этом плод может погибнуть на 5-7-м месяце беременности, а у новорожденных развивается гемолитическая анемия, сопровождающаяся малокровием и жировой дистрофией внутренних органов, выраженной желтухой и гемосидерозом.

Наследственные, или врожденные, гемолитические анемии связаны с каким-либо генетическим дефектом структуры мембран, ферментов или гемоглобина. Этот дефект передается по наследству.

Виды: врожденные гемолитические анемии в зависимости от генетического дефекта могут быть обусловлены мембранопатиями, ферментопатиями, гемоглобинопатиями.

Патогенез всех врожденных гемолитических анемий в основном сходен - в результате того или иного генетического дефекта либо разрушается мембрана эритроцитов, а сами эритроциты уменьшаются в размерах и могут принимать сферическую форму (микросфероцитоз), либо повышается проницаемость мембраны и эритроциты увеличиваются в размерах за счет поступления избыточного количества жидкости, либо нарушается синтез гемоглобина (гемоглобинозы) и образуются эритроциты неправильной формы, содержащие быстро распадающийся гемоглобин, причем удерживающий кислород (талассемия, серповидно-клеточная анемия и др.) (рис. 43).

Морфология врожденных гемолитических анемий мало отличается от изменений при вторичных гемолитических анемиях, за исключением размеров и формы эритроцитов. Также характерны выраженный внутрисосудистый гемолиз, гипоксия, гемосидероз, жировая дистрофия паренхиматозных органов, гиперплазия кроветворной ткани, возможны очаги экстрамедуллярного кроветворения, гепато- и спленомегалия.

ПАТОЛОГИЯ СИСТЕМЫ ЛЕЙКОЦИТОВ

В крови здорового человека в условиях покоя натощак содержится 4 10 9 /л лейкоцитов. Много лейкоцитов находится в тканях, где они участвуют в иммунном контроле.

Типовые изменения количества лейкоцитов в единице объема крови характеризуются либо их снижением - лейкопении, либо увеличением - лейкоцитозы, что, как правило, является реакцией системы лейкоцитов, развивающейся при болезнях и патологических состояниях. Поэтому излечение болезни приводит к нормализации лейкоцитарной формулы.

Лейкопения - уменьшение количества лейкоцитов в единице объема крови ниже нормы, обычно менее 4 10 9 /л. Она возникает в результате угнетения белого ростка системы гемопоэза, при усиленном разрушении лейкоцитов или при перераспределении крови между кровеносным руслом и депо крови, что наблюдается, например, при шоке.

Значение лейкопении заключается в ослаблении защитных сил организма и повышении его восприимчивости к различным инфекционным возбудителям.

Виды лейкопений по происхождению:

  • первичные лейкопении (врожденные или наследственные) связаны с различными генетическими дефектами в системе кроветворения на разных этапах лейкопоэза;
  • вторичные лейкопении возникают при действии на организм различных факторов - физических (ионизирующие излучения и т. п.), химических (бензол, инсектициды, цитостатики, сульфаниламиды, барбитураты и др.), продуктов метаболизма или компонентов различных возбудителей болезней.

Лейкоцитарная формула - соотношение различных видов циркулирующих лейкоцитов.

Если увеличивается количество молодых форм нейтрофилов (палочкоядерных, метамиелоцитов, миелоцитов, промиелоцитов), расположенных в левой части лейкоцитарной формулы, говорят о сдвиге формулы влево, что указывает на усиление пролиферации клеток миелоцитарного ряда. В правой части формулы располагаются зрелые формы этих клеток. Излечение болезни приводит к нормализации лейкоцитарной формулы. Уменьшение нормального числа лейкоцитов в лейкоцитарной формуле указывает на снижение регенераторных возможностей миелоидной ткани.

Патогенез лейкопений отражает нарушение или угнетение процесса лейкопоэза, а также чрезмерное разрушение лейкоцитов в циркулирующей крови или в органах гемопоэза, перераспределение лейкоцитов в сосудистом русле, возможна также потеря лейкоцитов организмом. При этом вследствие угнетения регенерации лейкопоэтической ткани на начальных этапах лейкопении снижается количество молодых форм нейтрофилов, а увеличение их молодых форм (т. е. сдвиг лейкоцитарной формулы влево) указывает на прекращение повреждающего действия и активацию лейкопоэза. Возможно также появление анизоцитоза и пойкилоцитоза лейкоцитов.

Лейкоцитоз - увеличение количества лейкоцитов в единице объема крови выше 4 10 9 /л. Он может быть физиологическим, адаптивным, патологическим или носить форму пейкемоидной реакции.

  • Физиологический лейкоцитозвозникает у здоровых людей в связи с перераспределением крови во время пищеварения, при физической работе.
  • Адаптивный лейкоцитоз развивается при заболеваниях, особенно характеризующихся воспалением. При этом количество лейкоцитов может увеличиваться до 40 10 9 /л.
  • Патологический лейкоцитозотражает опухолевую природу лейкоцитоза и характеризует лейкоз.

Лейкемоидная реакция - повышение общего чиста лейкоцитов периферической крови более 40 10 9 /л с появлением их незрелых форм (промиелоцитов, миелобластов), что делает лейкоцитоз похожим на лейкоз.

Агранулоцитоз - отсутствие или значительное снижение абсолютного числа всех видов зернистых гранулоцитов (лейкоцитов) - нейтрофилов, эозинофилов, базофилов. Агранулоцитоз, как правило, сочетается с лейкопенией.

ОПУХОЛИ СИСТЕМЫ КРОВИ, ИЛИ ГЕМОБЛАСТОЗЫ

Гемобластозы - опухолевые заболевания кроветворной и лимфатической ткани. Они подразделяются на системные заболевания - лейкозы, и регионарные - злокачественные лимфомы, или гематосаркомы. При лейкозах первично поражается костный мозг и опухолевые клетки обнаруживаются в крови (лейкемия), а при лимфомах в терминальной стадии наступает обширное метастазирование со вторичным поражением костного мозга. По распространенности гемобластозы занимают 5-е место среди всех опухолей человека. У детей первых 5 лет жизни на их долю приходится 30 % случаев онкологических заболеваний.

Этиология гемобластом принципиально не отличается от причин, вызывающих другие опухоли (см. главу 10) - это различные мутагенные факторы экзо- и эндогенного происхождения, действующие на стволовые и полустволовые клетки-предшественницы. Большое значение в возникновении гемобластозов имеет наследственный фактор.

Множество этиологических факторов воздействуют на геном стволовых и полустволовых клеток, приводя к их злокачественной трансформации. Поэтому геном является так называемым узким местом, через которое мутагены воздействуют на протоонкогены и антионкогены, превращая их в клеточные онкогены, что приводит к появлению опухоли. Развитие гемобластозов начинается с малигнизации одной стволовой или полустволовой клетки, дающей пул опухолевых клеток. Следовательно, все гемобластозы имеют моноклоновое происхождение, и все последующие опухолевые клетки развиваются из первоначально мутировавшей клетки и относятся к одному клону. Кроме малигнизации на уровне стволовых и полустволовых клеток-предшествен-ниц, развивается еще блок дифференцировки в пуле опухолевых клеток и они теряют способность к созреванию.

ЛЕЙКОЗЫ

Лейкозы - системные опухолевые заболевания, возникающие из кроветворных клеток с поражением костного мозга.

Заболеваемость лейкозами колеблется от 3 до 10 нанаселения. Мужчины болеют в 1,5 раза чаще женщин. Острые лейкозы чаще наблюдаются в возрасте от 10 до 18 лет, а хронические - у людей старше 40 лет.

При лейкозах опухолевая ткань первоначально разрастается на территории костного мозга и постепенно подавляет и вытесняет нормальные ростки кроветворения. Поэтому у больных лейкозом развиваются анемия, тромбоците-, лимфоците-, гранулоцитопения, что приводит к повышенной кровоточивости, кровоизлияниям, снижению иммунитета и присоединением инфекционных заболеваний. Метастазирование при лейкозах заключается в появлении лейкозных инфильтратов в печени, селезенке, лимфатических узлах, стенках сосудов и др. Обтурация сосудов опухолевыми клетками приводит к развитию инфарктов органов и язвенно-некротическим осложнениям.

Классификация лейкозов основана на 5 признаках этих заболеваний.

  1. По степени дифференцировки опухолевых клетоквыделяют недифференцированные, властные и цитарные лейкозы. При высоком уровне блока дифференцировки клетки опухоли напоминают недифференцированные и бластные формы ге мопоэза. Такие лейкозы протекают остро и очень злокачественно.

При остановке дифференцирования на уровне процитарных и цитарных клеток-предшественниц лейкозы протекают хронически и менее злокачественно.

  • По цитогенетическому признаку острые лейкозы подразделяют на лимфобластный, миелобластный, монобластный, эритромиелобластный, мегакариобластный, недифференцированный. Хронические лейкозы делят на лейкозы миелоцитарного происхождения (хронический миелоцитарный, хронический нейтрофильный, хронический эозинофильный и др.), лимфоцитарного (хронический лимфолейкоз и парапротеинемические лейкозы - миеломная болезнь, первичная макроглобулинемия Вальденстрема и др.) и моноцитарного - хронический моноцитарный лейкоз, гистиоцитоз X.
  • По иммунному фенотипу опухолевых клеток: на основании выявления маркеров их антигенов.
  • По общему количеству лейкоцитов в периферической крови выделяют лейкозы:
    • лейкемические - десятки и сотни тысяч лейкоцитов в 1 мкл крови, в том числе бласты;
    • сублейкемические - число лейкоцитов крови составляет 25-50 10 9 /л, включая бластные формы;
    • лейкопенические - количество лейкоцитов в периферической крови ниже нормы, но есть бласты;
    • алейкемические - количество лейкоците» в крови меньше нормы и отсутствуют бластные формы.
  • По характеру течения выделяют:
    1. острые лейкозы (они же недифференцированные и бластные);
    2. хронические лейкозы (цитарные).
  • Острые лейкозы развиваются из всех ростков морфологически недифференцируемых кроветворных клеток-предшественниц. Длительность течения заболевания составляет 2-18 мес, при успешном лечении ремиссии могут длиться до 5-8 лет.

    Различные формы острых лейкозо» имеют стереотипные морфологические проявления. Они заклинаются в развитии лейкозной инфильтрации костного мозга атипичными клетками ранних стадий гемопоэза (рис. 44). Ввиду нецифференциро-ванности этих клеток их цитогенетическую принадлежность можно выявить лишь с помощью цитохимических и иммуногистохи-мических методов. Костный мозг трубчатых костей становится красным, при некоторых острых лейкозах он приобретает зеленоватый цвет, свойственный гною, - пиоидный костный мозг. При этом происходит вытеснение нормальных клеток гемопоэза опухолевыми клетками. В периферической крови и в костном мозге имеются только бластные и зрелые формы клеток, но отсутствуют их промежуточные формы. Такая картина крови называется «лейкемический провал« . Лейкозные инфильтраты обнаруживаются в лимфатических узлах, селезенке и печени, что приводит к увеличению воспаления полости рта и ткани миндалин осложняется некротическим гингивитом, тонзиллитом, некротической ангиной, а при инфильтрации оболочек мозга развивается лейкозный менингит. Подавление эритроцитарного ростка приводит к нарастающей гипоксии и жировой дистрофии паренхиматозных органов.

    Рис. 44. Костный мозг при остром лимфобластном лейкозе. Ткань мозга состоит в основном из лимфобластов (а), просветы сосудов заполнены теми же клетками (б).

    В результате тромбоцитопении, поражения печени и стенок сосудов у больных развивается геморрагический синдром вплоть до кровоизлияний в мозг и смертельных желудочно-кишечных кровотечений. На этом фоне иногда присоединяется сепсис, приводящий больных к смерти (рис. 45).

    Наиболее часто, особенно у детей, встречается острый лимфобластный лейкоз, связанный с опухолевой трансформацией предшественников Т- и В-лимфоцитов, и острый миелобластный лейкоз, которым чаще страдают взрослые, обусловленный опухолевой пролиферацией клеток-предшественниц миелоидного ряда.

    Рис. 45. Острый лейкоз, а - лейкозная инфильтрация печени (показано стрелками); б - некроз миндалины (некротическая ангина); в - лейкозная инфильтрация почек; г - множественные кровоизлияния в эпикарде и эндокарде; д - лейкозная инфильтрация костного мозга (пиоидный костный мозг), истончение кортикального слоя бедренной кости (показано стрелкой).

    Рис. 46. Печень при хроническом миелолейкозе. Разрастание клеток миелоидного рода (а) по ходу синусоидов.

    Хронические лейкозы текут более 4 лет, при успешном лечении ремиссии заболевания могут продолжаться 20 лет и более. Хронические лейкозы отличаются от острых цитарной дифференцировкой опухолевых клеток и более длительным течением, которое имеет определенные стадии:

    • моноклоновая стадия характеризуется присутствием только одного клона опухолевых клеток, течет годами, относительно доброкачественно;
    • поликлоновая стадия, или властный криз, связана с появлением вторичных опухолевых клонов, характеризуется быстрым злокачественным течением, и 80 % больных погибают именно в этой стадии.

    Лейкозные инфильтраты разрастаются в костном мозге, печени, селезенке, почках, в лимфатических узлах, брыжейке кишечника, нередко в средостении, в связи с чем эти органы и ткани резко увеличиваются в размерах и могут сдавливать соседние органы (рис. 46). Особенно выражена спленомегалия (масса селезенки достигает 6-8 кг) и гепатомегалия (масса печени 5-6 кг). В сосудах образуются лейкозные тромбы, которые могут привести к развитию ишемических инфарктов, чаще в селезенке и почках. В крови нарастает количество нейтрофильных лейкоцитов или лимфоцитов, много переходных клеточных форм. Выражена анемия, тромбоцитопения, значительная иммунодепрессия и предрасположенность к инфекционным осложнениям, от которых больные нередко погибают. Костный мозг серо-красный. Жировая дистрофия паренхиматозных органов придает им серо-желтую окраску.

    Доброкачественное течение сменяется бластным кризом. При этом в крови быстро нарастает количество бластных форм - миело-, эритро-, лимфо-, мегакариобластов и др. Общее число лейкоцитов периферической крови может достигать несколько миллионов в 1 мкл. Властный криз служит причиной смерти больных.

    ПАРАПРОТЕИНЕМИЧЕСКИЕ ЛЕЙКОЗЫ

    Парапротеинемические лейкозы характеризуются способностью опухолевых клеток синтезировать однородные иммуноглобулины или их фрагменты - парапротеины. При этом опухолевые клетки представляют собой атипичные плазмоциты и поэтому сохраняют способность в извращенной форме синтезировать атипичные иммуноглобулины.

    Миеломная болезнь (плазмоцитома) - хронический лейкоз, наиболее часто встречающийся среди парапротеинемических гемобластозов.

    Возникает в основном у взрослых и при современных методах лечения может продолжаться 4-5 лет. В основе болезни лежит опухолевое разрастание в костном мозге атипичных плазмоцитов, получивших название миеломных клеток. Они синтезируют парапротеины, которые обнаруживаются в крови и моче больных. По характеру и распространенности опухолевого инфильтрата в костном мозге выделяют узловатую и диффузную формы болезни.

    При узловатой форме плазмоцитома образует опухолевые узлы в костном мозге, обычно плоских костей (свода черепа, ребер, таза) и позвонков. Лейкозная инфильтрация сопровождается разжижением кости или ее пазушным рассасыванием (остеолизис и остеопороз) с образованием правильной формы округлых дефектов, которые на рентгенограмме выглядят как гладкостенные пробоины. Пазушное рассасывание обусловливает выход кальция из костей и развитие гиперкальциемии с появлением множественных известковых метастазов в мышцах и паренхиматозных органах. Кроме того, возникают патологические переломы костей.

    При генерализованной форме миеломной болезни разрастание миеломных клеток происходит, помимо костного мозга, в селезенке, лимфатических узлах, печени, почках и других внутренних органах.

    В периферической крови обнаруживаются аномальные иммунные белки (парапротеины), в том числе мелкодисперсный белок Бенс-Джонса, который легко проходит через почечный фильтр и выявляется в моче. В связи с большой концентрацией белка Бенс-Джонса развивается парапротеинемический нефроз. Кроме того, в связи с нарушениями нормального синтеза иммунопротеинов плазмоцитома часто осложняется развитием амилоидоза с поражением почек. Поэтому причиной смерти этих больных нередко является уремия. Из-за резкого угнетения функции иммунной системы к основному заболеванию может присоединяться вторичная инфекция, которая также служит причиной смерти больных миеломной болезнью.

    ЗЛОКАЧЕСТВЕННЫЕ ЛИМФОМЫ (ГЕМАТОСАРКОМЫ)

    Злокачественные лимфомы (гематосаркомы) - регионарные злокачественные опухоли лимфоидной ткани, имеющие моноклоновое происхождение.

    Лимфомы развиваются из незрелых форм лимфоцитов и поражают лимфатическую ткань какой-либо одной области, однако в терминальной стадии заболеваний возможна генерализация опухолевого процесса с развитием метастазов в костный мозг.

    Этиология.

    Причины возникновения злокачественных лимфом в принципе не отличаются от причин, вызывающих опухоли другого происхождения. Вместе с тем доказано, что часть лимфом. так же как и некоторые другие лейкозы, имеет вирусное происхождение. Не исключена и наследственная предрасположенность к заболеванию. Трансформация нормальных гемопоэтических клеток в опухолевые происходит в результате изменений в геноме, вследствие чего нормальная генетическая программа гемопоэза изменяется в направлении опухолевого атипизма.

    Классификация лимфом.

    1. По клинико-морфологическим особенностями:
      • лимфогранулематоз, или болезнь Ходжкина;
      • неходжкинские лимфомы.
    2. По источнику роста (цитогенезу):
      • В-лимфоцитарные;
      • Т-лимфоцитарные.
    3. По степени дифференцировки опухолевых клеток:
      • низкой злокачественности;
      • умеренной злокачественности;
      • высокой злокачественности.

    Лимфогранулематоз (болезнь Ходжкина) описан в 1832 г. английским врачом Т. Ходжкиным. Частота заболевания составляет 3 случая нанаселения, или 1 % всех злокачественных новообразований. Опухоль поражает лимфатические узлы обычно одной области - шейные, медиастинальные, забрюшинные, реже подмышечные или паховые.

    Пораженные лимфатические узлы увеличиваются в размерах, сливаются между собой и образуют крупные пакеты. В начале заболевания лимфатические узлы мягкие, на разрезе розового цвета. По мере прогрессирования лимфомы в них развиваются некротические, а затем склеротические изменения, в связи с чем лимфатические узлы уплотняются, на разрезе выглядят суховатыми и пестрыми. В своем развитии лимфогранулематоз проходит несколько стадий - от изолированного поражения группы лимфатических узлов до генерализованного поражения внутренних органов с подавлением лимфоидной ткани и замещением ее полями склероза.

    При микроскопическом исследовании опухоль состоит из полиморфных опухолевых клеток лимфоцитарного ряда, среди которых имеются характерные гигантские клетки с лопастным ядром и узким ободком цитоплазмы - клетки Березовского-Штернберга. Эти клетки служат диагностическим признаком лимфогранулематоза. Кроме того, характерны клетки Ходжкина - крупные клетки с большим светлым ядром и темным ядрышком.

    Нередко в финале заболевания оно приобретает генерализованный характер с поражением многих внутренних органов - желудка, легких, печени, кожи. При вскрытии умерших от лимфогранулематоза особенно демонстративно выглядит селезенка - она увеличена в размерах, плотная, на разрезе красная с множественными бело-желтыми очагами некроза и склероза, что придает ей сходство с особым видом гранита - порфиром (порфировая селезенка).

    Неходжкинские лимфомы.

    Это группа злокачественных опухолей из недифференцированных и бластных форм В- и Т-клеток лимфатической ткани. Диагноз этих заболеваний требует обязательного морфологического и иммуногистохимического исследования биоптатов лимфатичесих узлов.