Прямые, параллельные и перпендикулярные плоскостям. Построение взаимно перпендикулярных прямых, прямой и плоскости, плоскостей

Из геометрии известно, что прямая параллельна плоскости, если она параллельна какой-либо прямой, принадлежащей плоскости. Пусть требуется (рис. 126) через точку D провести прямую, параллельную плоскости треугольника ABC. В плоскости треугольника лежат все три его стороны. Линию DE проводим так, чтобы она оказалась параллельной одной из сторон треугольника, например стороне АВ. Для этого, как известно, необходимо, чтобы было выдержано следующее условие: D 2 Е 2 ||А 2 В 2 и D 1 E 1 ||A 1 B 1 . Если требуется через точку D провести горизонталь, параллельную плоскости ABC, то предварительно в плоскости треугольника строят проекции горизонтали AF, а затем через точку проводят требуемую горизонталь DG||AF.

TBegin-->TEnd-->

Прежде чем рассматривать прямые, перпендикулярные плоскости, надо ознакомиться с проецированием прямого угла. Оказывается, что прямой угол проецируется без искажения, если одна его сторона параллельна данной плоскости, а другая не перпендикулярна ей (рис. 127, а). Докажем эту теорему; для этого изобразим прямой угол, составленный прямой а и горизонталью h, и его горизонтальную проекцию h 1 Хa 1 . Обратим внимание на плоскость а, она горизонтально-проецирующая, так как проходит через горизонтально-проецирующую прямую АА 1 . Сторона h угла по заданию параллельна плоскости П 1 и перпендикулярна прямой а. Одновременно прямая h перпендикулярна линии АА 1 , также принадлежащей плоскости а; значит, она перпендикулярна и самой плоскости а. Горизонтальная проекция h 1 параллельна горизонтали h, следовательно она тоже перпендикулярна плоскости а. Но тогда она перпендикулярна и прямой а 1 , принадлежащей этой плоскости. Итак, h 1 _|_a 1 , т. е. прямой угол спроецировался на плоскость без искажения, что и требовалось доказать.

На комплексном чертеже (рис. 127, б) горизонтальные проекции прямых составят прямой угол h1_|_ а1, фронтальные проекции h 2 и а 2 в данном случае образуют тупой угол. На фронтальную плоскость проекций П3 прямой угол спроецируется в виде прямого угла в том случае, когда одна из его сторон / будет являться фронталью.

TBegin-->
TEnd-->

Из геометрии известно, что прямая перпендикулярна плоскости, если она перпендикулярна двум прямым, принадлежащим этой плоскости. Такими прямыми могут быть выбраны горизонталь и фронталь плоскости. Если прямая перпендикулярна плоскости, то горизонтальная проекция прямой перпендикулярна горизонтальной проекции горизонтали, а фронтальная проекция - фронтальной проекции фронтали данной плоскости. Применим это положение для того, чтобы восставить перпендикуляр к плоскости треугольника ABC (рис. 128, а). Через точку А 2 A 1 проведем горизонталь h 2 h 1 , через точку С 2 С 1 проведем фронталь f 1 f 2 ; эти прямые пересекутся между собой в точке N 2 N 1 . Проекции перпендикуляра MN должны пройти: M 2 N 2 _|_ f 2 . M 1 N 1 _|_ h 1 Зная направление соответствующих проекций горизонтали и фронтали, можно провести проекции перпендикуляра из любой точки плоскости ABC. Решение упрощается, если плоскость задана следами kxl (рис. 128, б).

След k является нулевой фронталью, а след l - нулевой горизонталью. Ими можно воспользоваться для построения проекций перпендикуляра MN; фронтальная проекция M 2 N 2 перпендикуляра должна быть перпендикулярна фронтальной проекции k 2 фронтального следа плоскости k, горизонтальная проекция M 1 N 1 перпендикуляра должна быть перпендикулярна горизонтальной проекции l 1 горизонтального следа l плоскости. Точка N выбрана нами на фронтальном следе k; ее можно было взять на горизонтальном следе l или в другом месте плоскости.

rn
Для примера решим две задачи.

Задача 1 . Определить проекции расстояния от точки А до плоскости треугольника BCD.

Как известно, расстояние от точки до плоскости измеряется длиной перпендикуляра, опущенного из точки на эту плоскость. Для того чтобы опустить перпендикуляр, надо провести горизонталь и фронталь плоскости (рис. 129). Горизонталью h плоскости в этом примере является сторона треугольника BD, так как фронтальная ее проекция горизонтальна (перпендикулярна линиям связи). Остается провести фронталь BE (f); ее горизонтальная проекция B 1 E 1 должна быть параллельна воображаемой оси проекций х 12 ; фронтальную проекцию строим с помощью точки Е. Из фронтальной проекции А 3 точки А опускаем перпендикуляр на фронтальную проекцию В 2 Е 2 фронтали BE, а из горизонтальной проекции А 1 - на горизонтальную проекцию B 1 D 1 горизонтали BD. Теперь надо найти основание перпендикуляра - точку О. Для этого проводим горизонтально-проецирующую плоскость сигма _|_ П 1 находим линию пересечения MN, фронтальную проекцию O 2 точки О, а по ней и горизонтальную проекцию О 1 .

Задача решена: A 2 O 2 и А1O1 - проекции искомого расстояния. Отрезок АО видимый при проецировании на плоскости П2 и П1.

TBegin-->TEnd-->

Задача 2 . Через точку А провести плоскость р, перпендикулярную к плоскости a (BCD).

Из геометрии известно, что если плоскость проходит через прямую, которая перпендикулярна другой плоскости, то такие плоскости перпендикулярны. Воспользуемся предыдущим чертежом, на котором первая часть новой задачи решена - проведен перпендикуляр АО=а (рис. 130). Теперь достаточно провести через точку А любую прямую b. При этом образуется плоскость b_|_ а. Построенная плоскость для наглядности оттенена с помощью точек. Как видно, эта задача имеет множество решений.

Не будет преувеличением утверждать, что построение взаимно перпендикулярных прямых и плоскостей наряду с определением расстояния между двумя точками являются основными графическими операциями при решении метрических задач.

Теоретической предпосылкой для построения на эпюре Монжа проекций прямых и плоскостей, перпендикулярных по отношению друг к другу в пространстве, служит отмеченное раньше (см. § 6) свойство

проекции прямого угла, одна из сторон которого параллельна какой-либо плоскости проекции:

1. Взаимно перпендикулярные прямые.

Чтобы можно было воспользоваться отмеченным свойством для построения на эпюре Монжа двух пересекающихся под углом 90° прямых, необходимо, чтобы одна из них была параллельна какой-либо плоскости проекции. Поясним сказанное на примерах.

ПРИМЕР 1. Через точку А провести прямую l, пересекающую горизонталь h под прямым углом (рис. 249).

Так как одна из сторон h прямого угла параллельна плоскости π 1 , то на эту плоскость прямой угол спроецируется без искажения. Поэтому через А" проводим горизонтальную проекцию l" ⊥ h". Отмечаем точку М" = l" ∩ h". Находим М" (М" ∈ h"). Точки А" и М" определяют l" (см. рис. 249, а).

Если вместо горизонтали будет задана фронталь f, то геометрические построения по проведению прямой l ⊥ f аналогичны только что рассмотренным с той лишь разницей, что построения неискаженной проекции прямого угла следует начинать с фронтальной проекции (см. рис. 249, б).

ПРИМЕР 2. Через точку А провести прямую l , пересекающую прямую а, заданную отрезком [ВС], под углом 90° (рис. 250).

Так как данный отрезок занимает произвольное положение по отношению к плоскостям проекций, мы не можем, как в предыдущем примере, воспользоваться свойством о частном случае проецирования прямого угла, поэтому вначале необходимо [ВС] перевести в положение, параллельное какой-либо плоскости проекции.

На рис. 250 [ВС] переведен в положение, параллельное плоскости π 3 . Это сделано с помощью способа замены плоскостей проекции путем замены плоскости π 1 → π 3 || [ВС].

В результате такой замены в новой системе x 1 π 2 /π 3 [ВС] определяет горизонтальную прямую, поэтому все дальнейшие простроения выполнены так же, как это было сделано в предыдущем примере: после того, как была найдена точка М" 1 , ее перевели на исходные плоскости проекции в положение М" и М", эти точки совместно с А" и А" определяют проекции прямой l.

ПРИМЕР 3. Провести горизонтальную проекцию стороны [ВС] прямого угла АВС, если известны его фронтальная проекция ∠A"B"C" и горйзонтапьная проекция стороны [А"В"] (рис. 251).

1. Переводим сторону угла [ВА] в положение || π 3 путем перехода от системы плоскостей проекции хπ 2 /π 1 к новой x 1 π 3 /π 2



2. Определяем новую фронтальную проекцию .

Из В" 1 восставляем перпендикуляр к [В" 1 A" 1 ]. На этом перпендикуляре определяем точку С" 1 (С" 1 удалена от оси x 1 на расстояние |С x 1 С" 1 | = |С x С"|).

4. Горизонтальная проекция С" определяется как точка пересечения прямых (С" 1 С x 1) ∩ (С"С x) = С".

2. Взаимно перпендикулярные прямая и плоскость.

Из курса стереометрии известно, что прямая перпендикулярна плоскости, если она перпендикулярна хотя бы к двум пересекающимся прямым, принадлежащим этой плоскости.

Если в плоскости взять не произвольные пересекающиеся прямые, а ее горизонталь и фронталь, то открывается возможность воспользоваться свойством проекции прямого угла, как это было сделано в примере 1, рис. 249.

Рассмотрим следующий пример; пусть из точки A ∈ α требуется восставить перпендикуляр к плоскости α (рис. 252).

Через точку А проводим горизонталь h и фронталь f плоскости α. Тогда, по определению (АВ), перпендикулярная к плоскости α, должна быть перпендикулярна к прямым h и f, т. е. . Но сторона AM ∠ ВАМ || π 1 , поэтому ∠ВАМ проецируется на плоскость π 1 , без искажения, т. е.. Сторона АК ∠ ВАК || π 2 и, следовательно, на плоскость π 2 этот угол проецируется также без искажения, т. е. и . Приведенные рассуждения можно сформулировать в виде следующей теоремы: для того чтобы прямая в пространстве была перпендикулярна плоскости, необходимо и достаточно, чтобы на эпюре горизонтальная проекция прямой была перпендикулярна к горизонтальной проекции горизонтали плоскости, а фронтальная проекция к фронтальной проекции фронтали этой плоскости.

Если плоскость задана следами, то теорема может быть сформулирована иначе: для того чтобы прямая в пространстве была перпендикулярна плоскости, необходимо и достаточно, чтобы проекции этой прямой были перпендикулярны к одноименным следам плоскости.


Установленные теоремой зависимости между прямой в пространстве, перпендикулярной к плоскости, и проекциями этой прямой к проекциям линий уровня (следам) плоскости лежат в основе графического алгоритма решения задачи по проведению прямой, перпендикулярной к плоскости, а также построения плоскости, перпендикулярной к заданной прямой.

ПРИМЕР 1. Восставить в вершине А перпендикуляр AD к плоскости ΔАВС (рис. 253).

Для того чтобы определить направление проекций перпендикуляра, проводим проекции горизонтали h и фронтали f плоскости ΔАВС. После этого из точки А" восставляем перпендикуляр к h", а из А" - к f".

ПРИМЕР 2. Из точки А, принадлежащей плоскости α (m || n), восставить перпендикуляр к этой плоскости (рис. 254).

РЕШЕНИЕ. Для определения направления проекций перпендикуляра l" и l", как и в предыдущем примере, проводим через точку А (А",А") горизонталь h(h", h"), принадлежащую плоскости α. Зная направление h", строим горизонтальную проекцию перпендикуляра l" (l" ⊥ h"). Для определения направления фронтальной проекции перпендикуляра через точку А (А", А") проводим фронталь f (f", f") плоскости α. В силу параллельности f фронтальной плоскости проекции прямой угол между l и f проецируется на π 2 без искажения, поэтому проводим l" ⊥ f".

На рис. 255 эта же задача решена для случая, когда плоскость α задана следами. Для определения направлений проекций перпендикуляра отпадает необходимость в проведении горизонтали и фрон-


тали, так как их функции выполняют следы плоскости h 0α и f 0α . Как видно из чертежа, решение сводится к проведению через точки А" и А" проекций l" ⊥ h 0α и l" ⊥ f 0α .

ПРИМЕР 3. Построить плоскость γ, перпендикулярную к данной прямой l и проходящую через заданную точку А (рис. 256).

РЕШЕНИЕ. Через точку А проводим горизонталь h и фронталь f. Эти две пересекающиеся прямые определяют плоскость; чтобы она была перпендикулярна к прямой l, необходимо, чтобы прямые h и f составляли с прямой l угол 90°. Для этого проводим h" ⊥ l" и f" ⊥ l". Фронтальная проекция h" и горизонтальная проекция f" проводятся параллельно оси x.

Рассмотренный случай позволяет по иному решать задачу, приведенную в примере 3 (с. 175 рис. 251). Сторона [ВС] ∠АВС должна принадлежать плоскости γ ⊥ [АВ] и проходить через точку В (рис. 257).

Это условие и определяет ход решения задачи, который состоит в следующем: заключаем точку В в плоскость γ ⊥ [АВ], для этого через точку В проводим горизонталь и фронталь плоскости γ так, чтобы h" ⊥ A"B" и f" ⊥ A"B".

Точка С ∈ (ВС), принадлежащей плоскости γ, поэтому для нахождения ее горизонтальной проекции проводим через С" произвольную прямую 1"2", принадлежащую плоскости γ; определяем горизонтальную проекцию этой прямой 1"2" и на ней отмечаем точку С" (С" определяется пересечением линии связи - перпендикуляра, опущенного из С", с горизонтальной проекцией прямой 1"2"). С" совместно с В" определяют горизонтальную проекцию (ВС) ⊥ (АВ).

3. Взаимно перпендикулярные плоскости..

Две плоскости перпендикулярны, если одна из них содержит прямую, перпендикулярную к другой плоскости .

Исходя из определения перпендикулярности плоскостей, задачу на построение плоскости β, перпендикулярной к плоскости α, решаем следующим путем: проводим прямую l, перпендикулярную к плоскости α; заключаем прямую l в плоскость β. Плоскость β ⊥ α, так как β ⊃ l ⊥ α.

Через прямую l можно провести множество плоскостей, поэтому задача имеет множество решений. Чтобы конкретизировать ответ, необходимо указать дополнительные условия.

ПРИМЕР 1. Через данную прямую а провести плоскость β, перпендикулярную к плоскости α (рис. 258).

РЕШЕНИЕ. Определяем направление проекций перпендикуляра к плоскости α, для этого находим горизонтальную проекцию горизонтали (h") и фронтальную проекцию фронтали (f") ; из проекций произвольной точки А ∈ α проводим проекции перпендикуляра l" ⊥ h" и l" ⊥ f". Плоскость β ⊥ α, так как β ⊃ l ⊥ α.


ПРИМЕР 2. Через данную точку А провести горизонтально проецирующую плоскость γ, перпендикулярную к плоскости α, заданной следами (рис. 259, а).

Искомая плоскость γ должна содержать прямую, перпендикулярную плоскости α, или быть перпендикулярной к прямой, принадлежащей плоскости α. Так как плоскость γ должна быть горизонтально проецирующей, то прямая, перпендикулярная к ней, должна быть параллельна плоскости π 1 , т. е. являться горизонталью плоскости α или (что то же самое) горизонтальным следом этой плоскости - h 0α Поэтому через горизок тальную проекцию точки А" проводим горизонтальный след h 0γ ⊥ h 0α фронтальный след f 0γ ⊥ оси х.

На рис. 259, б показана фронтально проецирующая плоскость γ, проходящая через точку В и перпендикулярная к плоскости π 2 .

Из чертежа видно, что отличительной особенностью эпюра, на котором заданы две взаимно перпендикулярные плоскости, из которых одна - фронтально проецирующая, является перпендикулярность их фронтальных следов f 0γ ⊥ f 0α , горизонтальный след фронтально проецирующей плоскости перпендикулярен оси х.


Рис. 4.17 Рис. 4.18

Если плоскость задана пересекающимися прямыми (рис. 4.17), то решение задачи сводится к проведению через точку А пары прямых, параллельных заданным.

Если плоскость задана следами (4.18), то построение может быть выполнено по следующему алгоритму:

1. Через точку А проводим, например, горизонталь искомой плоскости Q, параллельную горизонталям заданной плоскости Р.

2. Через эту горизонталь проводим искомую плоскость параллельно заданной. Фронтальный след Q V проводим через фронтальную проекцию п" фронтального следа горизонтали параллельно следу P V ; горизонтальный след Q H - через точку Q Х параллельно следу Р Н .

Задача 2. Через точку А (а, а" ) провести плоскость Q , перпендикулярную к прямой (рис. 4.19).


а) Требуется показать искомую плоскость пересекающимися прямыми. В этом случае наиболее просто построить плоскость Q главными линиями — горизонталью и фронталью, проходящими через точку А (а, а") .

Рис. 4.19 Рис. 4.20

б) Требуется показать искомую плоскость следами. Построение может быть выполнено по следующему алгоритму. Через точку А проводим горизонталь плоскости Q перпендикулярно к отрезку ВС. Затем через эту горизонталь проводим искомую плоскость перпендикулярно к прямой ВС. Фронтальный след Q V проводим через фронтальную проекцию п" фронтального следа горизонтали перпендикулярно b"с′ ; горизонтальный след Q H — через точку Q Х перпендикулярно к bс.

Задача 3 . Через точку А (а, а") провести плоскость Q, перпендикулярную к заданной плоскости Р и проходящую через точку схода следов Q Х на оси X (рис. 4.20).

Известно, что плоскость Q будет перпендикулярна к заданной плоскости Р, если она проходит через перпендикуляр к ней или перпендикулярно к линии, лежащей в плоскости Р.

На рис. 4.20 решение задачи выполнено по плану, использующему первое из этих условий:

1. Через заданную точку А проведен перпендикуляр к плоскости Р (am+P H , a′m′+P V ).

2. Через этот перпендикуляр и заданную точку Q X проведена искомая плоскость Q . При этом след Q Н проведен через горизонтальную проекцию т горизонтального следа перпендикуляра и точку Q X ; след Q V — через фронтальную проекцию п′ фронтального следа перпендикуляра и точку Q X .

Искомую плоскость можно было бы построить и пересекающимися прямыми, если через точку Q X провести какую-либо прямую, имеющую общую точку с перпендикуляром.

Задача 4. Через точку А (а, а" )провести прямую, перпендикулярную к прямой ВС.

Искомый перпендикуляр лежит в плоскости, перпендикулярной к заданной прямой ВС.


Поэтому задача может быть решена по следующему алгоритму:

1. Через точку А проводим плоскость Q , перпендикулярную к прямой ВС.

2. Определяем точку К (k, k") пересечения прямой ВС с плоскостью Q при помощи горизонтально-проецирующей плоскости S .

3. Соединяем точки А и К .


На эпюре, решая задачу по этому алгоритму, можно плоскость показать двумя пересекающимися главными линиями (h×f ) (рис. 4.21) или следами (рис. 4.22).

Рис. 4.21 Рис. 4.22

Задача 5. Построить линию пересечения плоскостей ABC и DEF .

Эту задачу можно решать с использованием задачи на пересечение прямой с плоскостью. На рис. 4.23 показано построение линии пересечения плоскостей, заданных треугольниками ABC и DEF . Прямая MN построена по найденным точкам пересечения сторон DF и EF треугольника DEF с плоскостью треугольника ABC .

Например, чтобы найти точку М пересечения стороны DF с плоскостью ABC , через прямую DF проводят фронтально-проецирующую плоскость Р ABC по прямой I II df и 12 m искомой точки М . Затем находят фронтальную проекцию m " точки М . Точку N пересечения прямой EF с плоскостью ABC находят, используя фронтально-проецирующую плоскость Q , которая пересекается с плоскостью треугольника ABC по прямой III IV . На пересечении горизонтальных проекций ef и 34 получают горизонтальную проекцию n искомой точки N .

Соединив попарно точки m " и n ", m и n , получают проекции линии пересечения MN плоскостей ABC и DEF .

Видимость частей отрезков плоскостей устанавливается способом конкурирующих точек.

Признак перпендикулярности прямой и плоскости позволяет построить взаимно перпендикулярные прямую и плоскость, т. е. доказать существование таких прямых и плоскостей. Начнем с построения плоскости, перпендикулярной данной прямой и проходящей через данную точку. Решим две задачи на построение, соответствующие двум возможностям в расположении данной точки и данной прямой.

Задача 1. Через данную точку А на данной прямой a провести плоскость, перпендикулярную этой прямой.

Проведем через прямую а любые две плоскости и в каждой их этих плоскостей через точку А проведем по прямой, перпендикулярной прямой а, обозначим их b и с (рис. 2.17). Плоскость а, проходящая через прямые бис, содержит точку А и перпендикулярна прямой а (по признаку перпендикулярности прямой и плоскости). Поэтому плоскость а искомая. Задача решена.

Задача имеет лишь одно (т.е. единственное) решение. Действительно, допустим противное. Тогда, кроме плоскости а через точку А проходит еще какая-нибудь плоскость Р, перпендикулярная прямой а (рис. 2.18). Возьмем в плоскости Р любую прямую , проходящую через точку А и не лежащую в плоскости а. Проведем плоскость у через пересекающиеся прямые а и . Плоскость у пересечет плоскость а по прямой q. Прямая q не совпадает с прямой , так как q лежит в а не лежит в а. Обе эти прямые лежат в плоскости у, проходят через точку А и перпендикулярны прямой а так как и аналогично так как и . Но это противоречит известной теореме планиметрии, согласно которой в плоскости через каждую точку проходит лишь одна прямая, перпендикулярная данной прямой.

Итак, предположив, что через точку А проходят две плоскости, перпендикулярные прямой а, мы пришли к противоречию. Поэтому задача имеет единственное решение.

Задача 2. Через данную точку А, не лежащую на данной прямой а, провести плоскость, перпендикулярную этой прямой.

Через точку А проводим прямую b, перпендикулярную прямой а. Пусть В - точка пересечения а и b. Через точку В проводим еще прямую с, перпендикулярную прямой а (рис. 2.19). Плоскость, проходящая через обе проведенные прямые, будет перпендикулярна а по признаку перпендикулярности (теорема 2).

Как и в задаче 1, построенная плоскость единственная. Действительно, возьмем любую плоскость, проходящую через точку А перпендикулярно прямой а. Такая плоскость содержит прямую, перпендикулярную прямой а и проходящую через точку А. Но такая прямая только одна. Это прямая b, которая проходит через точку В. Значит, плоскость, проходящая через А и перпендикулярная прямой а, должна содержать точку В, а через точку В проходит лишь одна плоскость, перпендикулярная прямой а (задача 1). Итак, решив эти задачи на построение и доказав единственность их решений, мы доказали следующую важную теорему.

Теорема 3 (о плоскости, перпендикулярной прямой). Через каждую точку проходит плоскость, перпендикулярная данной прямой, и притом только одна.

Следствие (о плоскости перпендикуляров). Прямые, перпендикулярные данной прямой в данной ее точке, лежат в одной плоскости и покрывают ее.

Пусть а - данная прямая и А - какая-либо ее точка. Через нее проходит плоскость. По определению перпендикулярности прямой и плоскости она покрыта

крыта прямыми, перпендикулярными прямой а в точке А, т.е. через каждую точку плоскости а в ней проходит прямая, перпендикулярная прямой а.

Допустим, что через точку А проходит прямая , не лежащая в плоскости а. Проведем через нее и прямую а плоскость Р. Плоскость Р пересечет а по некоторой прямой с (рис. 2.20). И так как то Получается, что через точку А в плоскости Р проходят две прямые b и с, перпендикулярные прямой а. Это невозможно. Значит, прямых, перпендикулярных прямой а в точке А и не лежащих в плоскости а, нет. Все они лежат в этой плоскости.

Пример к следствию теоремы 3 дают спицы в колесе, перпендикулярные его оси: при вращении они зачерчивают плоскость (точнее, круг), принимая все положения, перпендикулярные оси вращения.

Теоремы 2 и 3 помогают дать простое решение следующей задачи.

Задача 3. Через точку данной плоскости провести прямую, перпендикулярную этой плоскости.

Пусть даны плоскость а и точка А в плоскости а. Проведем в плоскости а через точку А какую-либо прямую а. Через точку А проведем плоскость , перпендикулярную прямой а (задача 1). Плоскость пересечет плоскость а по некоторой прямой b (рис. 2.21). Проведем в плоскости Р через точку А прямую с, перпендикулярную прямой b. Так как (поскольку с лежит в плоскости

И ), то по теореме 2 . Единственность ее решения установлена в п. 2.1.

Замечание. О построениях в пространстве. Напомним, что в главе 1 мы изучаем "строительную геометрию". А в этом пункте мы решили три задачи на построение в пространстве. Что же понимают в стереометрии под терминами "построить”, "провести", "вписать" и т.п.? Сначала вспомним о построениях на плоскости. Указав, например, как строить окружность, описанную около треугольника, мы тем самым доказываем ее существование. Вообще, решая задачу на построение, мы доказываем теорему существования фигуры с заданными свойствами. Это решение сводится к составлению некоторого алгоритма построения искомой фигуры, т.е. к указанию последовательности выполнения простейших операций, приводящих к необходимому результату. Простейшие операции - это проведение отрезков, окружностей и нахождение точек их пересечения. Затем с помощью чертежных инструментов выполняется непосредственное построение фигуры на бумаге или на доске.

Итак, в планиметрии решение задачи на построение имеет как бы две стороны: теоретическую - алгоритм построения - и практическую - реализацию этого алгоритма, например, циркулем и линейкой.

У стереометрической задачи на построение остается лишь одна сторона - теоретическая, так как нет инструментов для построения в пространстве, аналогичных циркулю и линейке.

За основные построения в пространстве принимают те, которые обеспечиваются аксиомами и теоремами о существовании прямых и плоскостей. Это - проведение прямой через две точки, проведение плоскости (предложения п. 1.1 и аксиома 1 п. 1.4), а также построение прямой пересечения любых двух построенных плоскостей (аксиома 2 п. 1.4). Кроме того, мы, естественно, будем считать, что можно выполнять планиметрические построения в уже построенных плоскостях.

Решить задачу на построение в пространстве - это значит указать последовательность основных построений, в результате которых получается нужная фигура. Обычно явно указываются не все основные построения, а делаются ссылки на уже решенные задачи на построение, т.е. на уже доказанные предложения и теоремы о возможности таких построений.

Кроме построений - теорем существования в стереометрии, возможны еще два вида задач, связанных с построениями.

Во-первых, задачи на рисунке или на чертеже. Таковы задачи на сечения многогранников или других тел. Мы не строим на самом деле само сечение, а только изображаем его на

рисунке или чертеже, который у нас уже есть. Такие построения осуществляются как планиметрические с учетом аксиом и теорем стереометрии и правил изображений. Задачи такого типа постоянно решают в черчении и в конструкторской практике.

Во-вторых, задачи на построение на поверхностях тел. Задача: "Построить точки на поверхности куба, удаленные от данной его вершины на данное расстояние" - решается с помощью циркуля (как?). Задача: "Построить точки на поверхности шара, удаленные от данной точки на данное расстояние" - также решается с помощью циркуля (как?). Задачи такого типа решают не на уроках геометрии - их постоянно решает разметчик, разумеется, с точностью, которой позволяют добиться его инструменты. Но, решая такие задачи, он опирается на геометрию.

Из всех возможных положений прямой, пересекающей плоскость, отметим случай, когда прямая перпендикулярна к плоскости, и рассмотрим свойства проекций такой прямой.

На рис. 185 задана плоскость, определяемая двумя пересекающимися прямыми AN и AM, причем AN является горизонталью, а AM - фронтальна этой плоскости. Прямая АВ, изображенная на том же чертеже, перпендикулярна к АN и к AM и, следовательно, перпендикулярна к определяемой ими плоскости.

Перпендикуляр к плоскости перпендикулярен к любой прямой, проведенной в этой плоскости. Но чтобы при этом проекция перпендикуляра к плоскости общего положения оказалась перпендикулярной к одноименной проекции какой-либо прямой этой плоскости, прямая должна быть горизонталью, или фронталью, или профильной прямой плоскости. Поэтому, желая построить перпендикуляр к плоскости, берут в общем случае две такие прямые (например, горизонталь и фронталь, как это показано на рис. 185).

Итак, у перпендикуляра к плоскости его горизонтальная проекция перпендикулярна к горизонтальной проекции горизонтали, фронтальная проекция перпендикулярна к фронтальной проекции фронтали, профильная проекция перпендикулярна к профильной проекции профильной прямой этой плоскости.

Очевидно, в случае, когда плоскость выражена следами (рис. 186), мы получаем следующий вывод: если прямая перпендикулярна к плоскости, то горизонтальная проекция этой прямой перпендикулярна к горизонтальному следу плоскости, а фронтальная проекция перпендикулярна к фронтальному следу плоскости.

Итак, если в системе π 1 , π 2 горизонтальная проекция прямой перпендикулярна к горизонтальному следу и фронтальная проекция прямой перпендикулярна к фронтальному следу плоскости, то в случае плоскостей общего положения (рис. 186), а также горизонталъно- и фронталъно-проецирующих прямая перпендикулярна к плоскости . Но для профильно-проеци- рующей плоскости может оказаться, что прямая к этой плоскости не перпендикулярна, хотя

проекции прямой соответственно перпендикулярны к горизонтальному и фронтальному следам плоскости. Поэтому в случае профильно-проецйрующей плоскости надо рассмотреть также взаимное положение профильной проекции прямой и профильного следа данной плоскости и лишь после этого установить, будут ли перпендикулярны между собой данные прямая и плоскость,

Очевидно (рис. 187), горизонтальная проекция перпендикуляра к плоскости сливается с горизонтальной проекцией линии ската, проведенной в плоскости через основание перпендикуляра.

На рис. 186 из точки А проведен перпендикуляр к пл. α (А"С"⊥ f" 0α , А"С"⊥h" 0α) и показано построение точки Е, в которой перпендикуляр АС пересекает пл. α. Построение выполнено с помощью горизонтально-проецирующей пл. β, проведенной через перпендикуляр АЕ.

На рис. 188 показано построение перпендикуляра к плоскости, определяемой треугольником АВС. Перпендикуляр проведен через точку А.

Так как фронтальная проекция перпендикуляра к плоскости должна быть перпендикулярна к фронтальной проекции фронтали плоскости, а его горизонтальная проекция перпендикулярна к горизонтальной проекции горизонтали, то в плоскости через точку А проведены фронталь с проекциями A"D" и A"D" и горизонталь А"Е", А"Е", Конечно, эти прямые не обязательно проводить именно через точку А.

Далее проведены проекции перпендикуляра: M"N"⊥A"D", M"N"⊥А"Е". Почему проекции на рис. 188 на участках A"N" и А"М" показаны штриховыми линиями? Потому, что здесь рассматривается плоскость, заданная треугольником АВС, а не только этот треугольник: перпендикуляр находится частично перед плоскостью, частично за ней.


На рис. 189 и 190 показано построение плоскости, проходящей через точку А перпендикулярно к прямой ВС. На рис. 189 плоскость выражена следами. Построение начато с проведения через точку А горизонтали искомой плоскости: так как горизонтальный след плоскости должен быть перпендикулярен к В"С", то и горизонтальная проекция горизонтали должна быть перпендикулярна к В"С". Поэтому A"N"⊥В"С". Проекция A"N"||оси х, как это должно быть у горизонтали. Затем проведен через точку N"(N" - фронтальная проекция фронтального следа горизонтали AN) след f" 0α ⊥В"С", получена точка Х α и проведен след h" 0α ||A"N" (h" 0α ⊥В"С").

На рис. 190 плоскость определена ее фронталью AM и горизонталью AN. Эти прямые перпендикулярны к ВС (А"М"⊥В"С", A"N"⊥В"С"); определяемая ими плоскость перпендикулярна к ВС.

Так как перпендикуляр к плоскости перпендикулярен к каждой прямой, проведенной в этой плоскости, то, научившись проводить плоскость перпендикулярно к прямой, можно воспользоваться этим для проведения перпендикуляра из некоторой точки А к прямой общего положения ВС. Очевидно, можно наметить следую-щий план построения проекций искомой прямой:

1) через точку А провести плоскость (назовем ее γ), перпендикулярную к ВС;

2) определить точку К пересечения прямой ВС с пл. γ;

3) соединить точки А и К отрезком прямой линии.

Прямые АК и ВС взаимно перпендикулярны.

Пример построения дан на рис. 191. Через точку А проведена плоскость (γ), перпендикулярная к ВС. Это сделано при помощи фронтали, фронтальная проекция A"F" которой проведена перпендикулярно к фронтальной проекции В"С", и горизонтали, горизонтальная проекция которой перпендикулярна к В"С".

Затем найдена точка К, в которой прямая ВС пересекает пл. γ. Для этого через прямую ВС проведена горизонтально-проецируюгцая плоскость β (на чертеже она задана только горизонтальным следом (β"). Пл. β пересекает пл. γ по прямой с проекциями 1"2" и 1"2". В пересечении этой прямой с прямой ВС получается точка К. Прямая АК является искомым перпендикуляром к ВС. Действительно, прямая АК пересекает прямую ВС и находится в пл. γ, перпендикулярной к прямой ВС; следовательно, АК⊥ВС.

В § 15 было показано (рис. 92), как можно провести перпендикуляр из точки на прямую. Но там это было выполнено при помощи введения в систему π 1 , π 2 дополнительной плоскости и образования, таким образом, системы π 3 , π 1 , в которой пл. π 3 проводится параллельно заданной прямой. Рекомендуем сравнить построения, данные на рис. 92 и 191.

На рис. 192 изображены плоскость общего положения - α, проходящая через точку А, и перпендикуляр AM к этой плоркости, продолженный до пересечения с пл. π 1 в точке В".

Угол φ 1 между пл. α, и пл.π 1 и угол φ между прямой AM и пл. π 1 являются острыми углами прямоугольного треугольника В"AM", и, следовательно, φ 1 +φ=90°. Аналогично, если пл.α составляет с пл. π 2 угол σ 2 , а прямая AM, перпендикулярная к α, составляет с пл. π 2 угол σ, то σ 2 +σ=90°. Из этого, прежде всего, следует, что плоскость общего положения, которая должна составлять с пл.π 1 угол φ 1 , а с пл. π 2 угол σ 2 , может быть построена, лишь если 180° > φ 1 +σ 2 >90°.

Действительно, складывая почленно φ 1 + φ=90° и σ 2 +σ=90°, получим φ 1 +σ 2 +φ+σ=180°, т. е. φ 1 +σ 2 90°. Если взять φ 1 +σ 2 =90°, то получится профильно-проецирующая плоскость, а если взять φ 1 +σ 2 =180°, то получится профильная плоскость, т.е. в обоих этих случаях плоскость не общего положения, а частного.