Источники энергии в организме человека. Основным источником энергии в организме являются

Углеводами называют природные органические вещества, формула которых содержит в своем составе углерод и воду. Углеводы способны давать нашему организму энергию, необходимую для его полноценной жизнедеятельности. По своей химической структуре, углеводы делятся на простые и сложные .

  1. К простым углеводам относятся углеводы, содержащиеся в молоке; фруктах и сладостях – моно- и олигосахариды.
  2. Сложными же углеводами являются такие соединения как крахмал, гликоген и целлюлоза. Они содержатся в злаковых, кукурузе, картофеле и животных клетках.

ПРОДУКТЫ БОГАТЫЕ УГЛЕВОДАМИ:

Указано ориентировочное количество в 100 г продукта

Сахар-рафинад 99,9 г Мед пчелиный 80,3 г Мармелад 79,4 г

Пряники 77,7 г Соломка сладкая 69,3 Финики 69,2 г

Макароны из муки 1-сорта 68,4 г Крупа перловая 66,9 г Изюм (кишмиш) 65,8г

Повидло яблочное 65 г Рис 62,3 г Овсяные хлопья «Геркулес» 61,8 г

Пшеничная мука 61,5 г Кукуруза 61,4 г Гречка 60,4 г

+ Еще 40 продуктов богатых углеводами (указано количество грамм в 100 г продукта ):
Крахмал 83,5 Крупа ячневая 71,7 Подосиновики сушеные 33 Мак 14,5
Мука рисовая 80,2 Крупа пшено 69,3 Соя 26,5 Инжир 13,9
Крупа рисовая 73,7 Баранки 68,7 Чечевица 24,8 Миндаль 13,6
Крупа манная 73,3 Крупа овсяная 65,4 Шиповник свежий 24 Рябина садовая 12,5
Мука ржаная 76,9 Сдобная выпечка 60 Кешью 22,5 Шелковица 12,5
Крупа кукурузная 75 Шиповник сушеный 60 Бананы 22 Черешня 12,3
Сушки 73 Нут 54 Мука соевая 22 Грецкий орех 10,2
Сухари пшен. 72,4 Хлеб ржаной 49,8 Кедровый орех 20 Арахис 9,7
Мука кукурузная 72 Подберезовики сушен. 37 Виноград 17,5 Какао бобы 10
Мука гречневая 71,9 Зародыши пшеницы 33 Хурма 15,9 Белые сушеные грибы 9

Суточная потребность в углеводах Для того чтобы чувствовать себя комфортно, необходимо, чтобы каждая клетка нашего организма получала положенную ей норму энергии. Без этого мозг не сможет выполнять свои аналитико-координационные функции, а, следовательно, не передаст соответствующую команду мышцам, которые также окажутся бесполезными. В медицине такое заболевание называется кетозом.Чтобы этого не допустить, необходимо обязательно включать в свой ежедневный рацион требуемое количество углеводов. Для человека, ведущего активный образ жизни, их суточное количество должно быть не ниже 125 грамм.Если же ваш образ жизни менее активен, допускается употребление меньшего количества углеводов, но их количество не должно быть ниже 100 грамм / сутки.

Потребность в углеводах возрастает: Являясь главными источниками энергии, поступающей в организм с пищей, углеводы в первую очередь, используются во время активной умственной и физической деятельности. Следовательно, во время серьезных производственных нагрузок потребность в углеводах максимальна. Увеличивается потребность в углеводах и при беременности, а также в период кормления ребенка грудью.

Потребность в углеводах снижается: Низкая производительность труда, пассивный образ жизни снижают энергозатраты организма, а, следовательно, и потребность в углеводах. Проводя выходные дни перед телевизором, читая художественную литературу или занимаясь сидячей работой, не требующей серьезных энергозатрат, можно спокойно уменьшить количество углеводов в предельно допустимых нормах, без вреда для организма.

Усваиваемость углеводов Как было уже сказано выше, углеводы делятся на простые и сложные . По степени усваиваемости – на быстро- , медленно- и неусваиваемые организмом углеводы.К числу первых относятся такие углеводы, как глюкоза, фруктоза и галактоза . Эти углеводы относятся к классу так называемых моносахаридов и быстро усваиваются организмом. Продукты, содержащие быстро-усваиваемые углеводы: мед, карамель, бананы, шоколад, финики и т.д.Самым важным углеводом для нас является глюкоза. Именно она отвечает за энергетическое обеспечение организма. Но если вы спросите, что же происходит с фруктозой и галактозой , то не волнуйтесь, они не пропадают даром. Под воздействием физико-химических реакций, проходящих в организме, они трансформируются опять таки в молекулы глюкозы.Теперь, что касается сложных углеводов . Они, как уже было сказано выше, содержатся в животных клетках и тканях растений и усваиваются обычно медленно. Растительные углеводы в свою очередь подразделяются на перевариваемые и неперевариваемые. К перевариваемым относится крахмал, который состоит из глюкозных молекул, выстроенных особым способом, так что для их расщепления требуется больше времени.Целлюлоза же, несмотря на то, что она также относится к углеводам, энергию для нашего организма не поставляет, так как является нерастворимой частью растительной клетки. Однако она также принимает активное участие в процессе пищеварения.Вы, вероятно, видели на полках магазинов, аптек, либо у дистрибьюторов сетевых компаний препараты, которые содержат растительную клетчатку . Именно она и является растительной целлюлозой, которая, действует как ершик, очищая стенки нашего пищеварительного тракта от всевозможных загрязнений. Гликоген же стоит особняком. Высвобождаясь по мере необходимости, он исполняет роль своеобразного хранилища глюкозы, которая откладывается в гранулированном виде в цитоплазме клеток печени, а также в мышечной ткани. Когда же в организм поступает очередная порция углеводов, то часть из них тут же преобразуется в гликоген, так сказать «на черный день». То, что не было трансформировано в молекулы гликогена, поступает на переработку, целью которой является получение энергии.

Полезные свойства углеводов и их влияние на организм Углеводы не только являются отличным пищевым источником энергии для организма, но также входят в строение клеточных оболочек, очищают организм от шлаков (целлюлоза), участвуют в защите организма от вирусов и бактерий, играя немаловажную роль в создании крепкого иммунитета. Применяются в различных видах производства. В пищевой промышленности, например, используется крахмал, глюкоза и пектиновые вещества. Для производства бумаги, тканей, а также как пищевая добавка, используется целлюлоза. Спирты, получившиеся путем сбраживания углеводов, применяются в медицине и фармакологии.

Какие углеводы предпочесть? В питании необходимо соблюдать долевое количество быстро- и медленно-усваиваемых углеводов. Первые хороши в том случае, когда необходимо быстро получить некое количество энергии, предназначенной для выполнения определенной работы. Например, для того, чтобы быстрее и лучше подготовиться к экзаменам. В этом случае можно употребить определенное количество быстро усваиваемых углеводов (мед, шоколад, конфеты и т.д.). Употребляют «быстрые» углеводы и спортсмены во время выступлений и после, для быстрого восстановления сил.Если же выполнение работы может занять длительное время, то в данном случае употреблять лучше «медленные» углеводы. Поскольку, для их расщепления требуется большее количество времени, то и выделение энергии растянется на весь период работы. Если же в данном случае употребить быстро-усваиваемые углеводы, притом в количестве, необходимом для выполнения длительной работы, может произойти непоправимое.Энергия выделится быстро и массированно. А большое количество неуправляемой энергии, это как шаровая молния, способная нанести непоправимый вред здоровью. Часто от такого выброса энергии страдает нервная система, в которой может произойти элементарное замыкание, как и в обычных электросетях. В этом случае она начинает сбоить и человек превращается в нервное создание, которое не способно выполнять точные действия с участием мелкой моторики рук.

Признаки нехватки углеводов в организме

Депрессия, апатия, упадок сил могут стать первыми сигналами нехватки углеводов в организме. Если питание не нормализовать, скорректировав рацион необходимым количеством углеводистых продуктов, состояние может ухудшиться. Следующий этап - это разрушение жизненно важных белков организма. Все это вызывается токсическим повреждением мозга, страдающего от недостатка углеводов. Медики называют такое заболевание кетозом.

Признаки избытка углеводов в организме

Гиперактивность, лишний вес, дрожь в теле и неспособность сконцентрироваться могут указывать на избыток углеводов в организме. В первую очередь, от переизбытка углеводов страдает нервная система.Вторым же органом, страдающим от переизбытка энергии, является поджелудочная железа. Она расположена в левом подреберье. Тело железы представляет собой удлиненное образование длинной 14-22 см и шириной 3-9 см. Помимо того, что она производит панкреатический сок, богатый ферментами, необходимыми для пищеварения, она также участвует и в углеводном обмене. Это происходит благодаря так называемым островкам Лангенгартса, которые покрывают всю внешнюю поверхность железы. Они производят вещество, именуемое в простонародье инсулином. Именно этот гормон поджелудочной железы отвечает, будут ли у человека проблемы с углеводами или нет.Частое и неумеренное употребление продуктов, повышающих уровень инсулина в крови («быстрых» углеводов) может стать причиной диабета II типа, гипертонии и сердечно-сосудистых заболеваний.

ЧТО ТАКОЕ ГЛИКЕМИЧЕСКИЙ ИНДЕКС?

Сегодня большое внимание уделяется гликемическому индексу продуктов питания. Чаще всего такими данными пользуются спортсмены и другие люди, мечтающие быть здоровыми и обрести стройные формы. Гликемическим индексом (ГИ) называется показатель того, насколько пища повышает уровень сахара в крови. За абсолютную величину взята глюкоза, с ГИ равным 100%. К продуктам с высоким ГИ чаще всего относится пища, содержащая простые углеводы, сложно-углеводистые продукты имеют, как правило, низкий ГИ.

Многим из вас известно заболевание под названием диабет. Некоторых оно, к счастью, миновало, а другие люди вынуждены в течение долгих лет пить делать себе уколы инсулина. Вызывается такое заболевание недостаточным количеством гормона инсулина в организме.

Что же происходит, когда количество поступившей глюкозы выше необходимого уровня? На ее переработку направляются дополнительные порции инсулина. Но необходимо учесть, что островки Лангенгартса, отвечающие за его производство, обладают одной неприятной особенностью. Когда инсулин, содержащийся в том или ином островке, устремляется на встречу порции углеводов, сам островок съеживается, и больше он инсулин не производит.

Казалось бы, что на его место должны прийти другие островки, продолжившие его великую миссию. Но нет, в результате современной экологии, наш организм утратил возможность к продуцированию новых островков. Поэтому, чтобы Вас не застал диабет, на самом пике вашей жизни, не стоит употреблять большое количество быстро усваиваемых углеводов. Лучше подумать о тех углеводах, которые не причинят вам вреда, а их употребление принесет вам хорошее настроение и активный образ жизни на долгие годы.

УГЛЕВОДЫ В БОРЬБЕ ЗА СТРОЙНОСТЬ И КРАСОТУ

Желающим оставаться стройными и подтянутыми, диетологи рекомендуют употреблять в пищу медленно усваиваемые углеводы, которые содержатся в овощах, включая бобовые, в некоторых фруктах и крупах. Эти продукты дольше усваиваются организмом и, следовательно, надолго сохраняется чувство сытости.

Что касается энергетической ценности углеводов, то она вычисляется следующим образом.

Поскольку 1 грамм углеводов способен произвести энергии в количестве 4,1 килокалории, то при активном образе жизни (суточная норма - 125 грамм), человек получит от употребляемых углеводов 512,5 килокалорий. Менее активному человеку потребуется всего лишь 410 килокалорий, при суточной норме углеводов 100 грамм.

УГЛЕВОДЫ И ЗДОРОВЬЕ

Ниже мы представляем примерный перечень продуктов, на которые следует обратить свое особое внимание. Это медленно усваиваемые углеводы, которые могут принести максимальную пользу вашему здоровью.

На первом месте у нас стоят овсяная, рисовая и гречневая каши. Затем идут ржаной и пшеничный хлеб из муки грубого помола. Далее наш перечень продолжают горох и фасоль. И завершается он картофелем и макаронными изделиями из твердых сортов пшеницы.

Что же касается «быстрых» углеводов, то вместо тортиков и пирожных, съешьте лучше один банан, немного фиников, изюма, или ложечку гречневого либо липового меда. Этого количества будет достаточно для выполнения краткой, но требующей большого количества энергии работы.

Ну а мы завершаем, и надеемся, что ваш разум и чувство меры сберегут ваше здоровье на долгие годы. Здоровья вам и долголетия!

Существует несколько причин, по которым мы должны обратить на питание особое внимание. Во-первых, все клетки и ткани нашего организма формируются из той пищи, которую мы едим. Во-вторых, пища является источником энергии, необходимой для функционирования организма. В-третьих, пища - это главная часть окружающей среды, с которой мы взаимодействуем. И последнее, пища была создана для того, чтобы наслаждаться ею, для того, чтобы быть неотъемлемой частью радости жизни, и наши чувства позволяют нам по достоинству оценить качество, вкус и саму ткань поедаемого продукта.

Сегодня мы предлагаем вам поговорить о энергетических питательных веществах, содержащихся в нашей пище. К ним относятся углеводы, жиры и белки. Говоря в общем, мы считаем углеводы непосредственным источником энергии, белки - теми кирпичиками, из которых строится весь наш организм, и жиры - энергетическими складами.

В овощах и плодах основные питательные вещества представлены углеводами. Продукты сада и огорода содержат простые (глюкоза, фруктоза, сахароза) и сложные (крахмал, пектины, клетчатка) углеводы. В овощах углеводы представлены крахмалом, за исключением свеклы и моркови, где преобладают сахара. Во фруктах преимущественно содержатся сахара.

Крахмал является важнейшим углеводом растений. Состоит он из большого количества молекул глюкозы. Крахмалом богат картофель. Несколько меньше его в бобовых и поздних сортах яблок. В яблоках, например, в процессе их созревания количество крахмала увеличивается, а при хранении снижается. Это вызвано тем, что при дозревании во время хранения крахмал в продукте переходит в сахар. Много его в зеленых бананах, а в зрелых в 10 раз меньше, так как он превращается в сахара. Крахмал нужен организму в основном для удовлетворения его потребности в сахаре. В пищеварительном тракте под влиянием ферментов и кислот крахмал расщепляется на молекулы глюкозы, которые затем используются для нужд организма.

Фруктоза содержится во многих плодах и овощах. Чем богаче ею плоды, тем они слаще. Доказана прямая зависимость выносливости и работоспособности человека от содержания этого вещества в мышцах и печени. При малой подвижности человека, нервных стрессах, гнилостных процессах в кишечнике, тучности фруктоза наиболее благоприятна из прочих углеводов.

Глюкоза находится в плодах в свободном виде. Она входит в состав крахмала, клетчатки, сахарозы и других углеводов. Глюкоза, которую наш организм использует для производства энергии, - это высококачественное горючее. Циркулируя с потоком крови, глюкоза восполняет постоянную нужду клеток организма. Она наиболее быстро и легко используется организмом для образования гликогена, питания тканей мозга, работы мышц, в том числе сердечной.

Сахароза в больших количествах содержится в сахарной свекле и сахарном тростнике. Независимо от источников сырья, сахар представляет собой почти чистую сахарозу. Ее содержание в сахарном песке составляет 99,75%, а в сахаре-рафинаде – 99,9%.

Для усвоения простых углеводов (глюкозы, фруктозы и галактозы) пищеварения не требуется. Столовый сахар и мальтоза перевариваются в простые сахара в считанные минуты. Для того чтобы снабдить кровь этой быстро усваиваемой энергией, нашему рациону требуется совсем немного сахара. В случае перенасыщения поджелудочная железа вынуждена работать сверхурочно, производя избыточный инсулин для превращения излишков сахара в жир. В любой определенный промежуток времени наш организм способен справляться должным образом только с ограниченным количеством простых сахаров.

Излишки сахара стопорят человеческую машину подобно тому, как переполненный карбюратор застопоривает двигатель автомобиля, это всего лишь одна из опасностей злоупотребления сахаром. Есть и другие вредные воздействия. Они таковы:

  • истощение запасов витамина В1;
  • заболевание зубов, поскольку сахар создает идеальную среду для разрушающих зубы микроорганизмов;
  • угнетение иммунной системы вследствие того, что сахар угнетает способность белых кровяных клеток убивать микробы;
  • повышенное количество жира в крови (от превращения глюкозы в триглицерид);
  • стимулирование гипогликемии и возможное начало диабета;
  • желудочное раздражение, возникающее, когда в желудке содержится более 10% сахара (раствор концентрированного сахара – это сильный раздражитель слизистой оболочки);
  • запор (в богатых сахаром продуктах обычно недостаточное содержание волокон);
  • повышение уровня холестерина в крови.

Мы сможем избежать этих осложнений, если заменим в нашем рационе рафинированный сахар на фрукты (один зрелый банан содержит шесть чайных ложек сахара), а основой диеты сделаем сложные углеводы, содержащиеся в пшенице, рисе, картофеле, бобовых и других продуктах, в составе которых есть крахмал.

Большинство сложных углеводов усваиваются на протяжении нескольких часов и высвобождают простые сахара постепенно. Это позволяет поджелудочной железе, печени, надпочечной железе, почкам и другим органам использовать эту энергию должным образом. Более того, из-за повышенного волокнистого содержания углеводсодержащих продуктов мы обычно на такой диете не переедаем.

Другое преимущество сложных углеводов состоит в том, что они содержат минералы, необходимые для соответствующего усвоения других питательных веществ. Рафинированный сахар не имеет ни минералов, ни витаминов, ни волокнистого содержания.

Идеальная диета должна включать, если вообще должна его содержать, минимальное количество сахара (меда, сахарозы, мальтозы, сладких сиропов), а вместо него - обилие сложных углеводов, которыми богаты картофель, злаковые, хлеб и иные продукты из муки грубого помола. Сложные углеводы должны составлять главную часть ежедневного потребления калорий.

«И сказал Бог: вот, Я дал вам всякую траву, сеющую семя, какая есть на всей земле, и всякое дерево, у которого плод древесный, сеющий семя, - вам сие будет в пищу» (Бытие 1: 29).

Подготовила А. Конакова

Следующий класс основных химических соединений нашего организма - углеводы. Углеводы всем нам хорошо известны в виде обычного пищевого сахара (химически он является сахарозой ) или крахмала.
Углеводы делятся на простые и сложные. Из простых углеводов (моносахариды) наибольшее значение для человека имеют глюкоза, фруктоза и галактоза.
К сложным углеводам относятся олигосахариды (дисахариды: сахароза, лактоза и др.) и несахароподобные углеводы - полисахариды (крахмал, гликоген, клетчатка и др.).
Моносахариды и полисахариды отличаются по своему физиоло¬гическому действию на организм. Использование в пищевом рационе избытка легкоусвояемых моно- и дисахаридов способствует быстрому увеличению уровня сахара в крови, что может иметь негативное значение для больных с сахарным диабетом (СД) и ожирением.
Полисахариды значительно медленнее расщепляются в тонком кишечнике. Поэтому нарастание концентрации сахара в крови происходит постепенно. В связи с этим потребление продуктов, богатых крахмалом (хлеб, крупы, картофель, макароны), более полезно.
Вместе с крахмалом в организм поступают витамины, минеральные вещества, неперевариваемые пищевые волокна. К последним относятся клетчатка и пектиновые вещества.
Клетчатка (целлюлоза) оказывает благоприятное регулирующее действие на работу кишечника, желчевыводящих путей, препятствует застою пищи в желудочно-кишечном тракте, способствует выведению холестерина. К продуктам, богатым клетчаткой, относятся капуста, свекла, фасоль, ржаная мука,и др.
Пектиновые вещества входят в состав мякоти фруктов, листьев, зеленых частей стеблей. Они способны адсорбировать различные токсины (в том числе и тяжелые металлы). Много пектинов содержится в мармеладе, повидле, джемах, пастиле, но больше всего этих веществ имеется в мякоти тыквы, которая богата также и каротином (предшественник витамина А).
Большинство углеводов для организма человека - быстроусво-яемый источник энергии. Тем не менее углеводы не являются абсолютно необходимыми питательными веществами. Некоторые из них, например, важнейшее топливо для наших клеток - глюкоза, могут довольно легко синтезироваться из других химических соединений, в частности аминокислот или липидов.
Однако нельзя и недооценивать роль углеводов. Дело в том, что они не только способны, быстро сгорая в организме, обеспечивать его достаточным количеством энергии, но и откладываться про запас в виде гликогена - вещества, очень похожего на всем известный растительный крахмал. Основные запасы гликогена у нас сосредоточены в печени или мышцах. Если энергопотребности организма растут, например при значительной физической нагрузке, то запасы гликогена легко мобилизуются, гликоген превращается в глюкозу, а та уже используется клетками и тканями нашего организма как энергоноситель.

Опасность простых углеводов!

Настройки просмотра комментариев

Плоский список - свёрнутый Плоский список - развёрнутый Древовидный - свёрнутый Древовидный - развёрнутый

По дате - сначала новые По дате - сначала старые

Выберите нужный метод показа комментариев и нажмите "Сохранить установки".

К таким выводам пришли ученые из университетов Иерусалима (Израиль) и Йейля (США), проведя серию экспериментов.

Кузнечиков вида Melanoplus femurrubrum посадили в две клетки, в одну из которых запустили также пауков Pisaurina mira - их естественных врагов. Задачей было только напугать кузнечиков, чтобы отследить их реакцию на хищников, поэтому пауков снабдили "намордниками", склеив им жвалы. Кузнечики испытывали сильный стресс, в результате метаболизм в их организмах сильно увеличивался и появлялся "зверский" аппетит - по аналогии с людьми, которые едят много сладкого, когда волнуются. Кузнечики поглощали за короткий срок большое количество углеводов, углеводород из которых прекрасно усваивался организмом.

Помимо этого, "объевшиеся" кузнечики, как оказалось, после смерти могут приносить вред экосистеме. Ученые обнаружили это, поместив остатки их тел в образцы почвы, где происходил процесс перегноя. Активность почвенных микробов падала на 62% в лабораторных условиях, и на 19% в полевых условиях, говорится в исследовании.

Чтобы проверить результаты эксперимента, ученые создали химическую модель "в реальном времени", заменив остовы настоящих кузнечиков органическими "куколками", состоящими, как и естественные прототипы, из углеводов, белков и хитина в разных пропорциях. Результаты опытов показали, что чем больше в останках кузнечиков был процент азота (содержащегося в белках), тем лучше в почвах шли процессы разложения органики.

Углеводы Органические

Углеводы

Органические соединения составляют в среднем 20-30 % массы клетки живого организма. К ним относятся биологические полимеры: белки, нуклеиновые кислоты, углеводы, а также жиры и ряд небольших молекул-гормонов, пигментов, АТФ и пр. В различные типы клеток входит неодинаковое количество органических соединений. В растительных клетках преобладают сложные углеводы-полисахариды, в животных - больше белков и жиров. Тем не менее, каждая из групп органических веществ в любом типе клеток выполняет сходные функции: обеспечивает энергией, является строительным материалом.

1. КРАТКАЯ СПРАВКА ОБ УГЛЕВОДАХ

Углеводы - органические соединения, состоящие из одной или многих молекул простых сахаров. Молярная масса углеводов колеблется в пределах от 100 до 1000000 Да (Дальтон-масса, приблизительно равная массе одного атома водорода). Их общую формулу обычно записывают в виде Сn(Н2О)n (где n - не меньше трех). Впервые в 1844 г. этот термин ввел отечественный ученый К. Шмид (1822-1894).

Название «углеводы» возникло на основании анализа первых известных представителей этой группы соединений. Оказалось, что эти вещества состоят из углерода, водорода и кислорода, причем соотношение числа атомов водорода и кислорода у них такое же, как и в воде: на два атома водорода - один атом кислорода. Таким образом, их рассматривали как соединение углерода с водой. В дальнейшем стало известно много углеводов, не отвечающих этому условию, однако название «углеводы» до сих пор остается общепринятым. В животной клетке углеводы находятся в количестве, не превышающем 2-5 %. Наиболее богаты углеводами растительные клетки, где их содержание в некоторых случаях достигает 90 % сухой массы (например, в клубнях картофеля, семенах).

2. КЛАССИФИКАЦИЯ УГЛЕВОДОВ

Выделяют три группы углеводов: моносахариды, или простые сахара (глюкоза, фруктоза); олигосахариды - соединения, состоящие из 2-10 последовательно соединенных молекул простых сахаров (сахароза, мальтоза); полисахариды, включающие более 10 молекул сахаров (крахмал, целлюлоза).

3. СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ ОРГАНИЗАЦИИ МОНО- И ДИСАХАРИДОВ: СТРОЕНИЕ; НАХОЖДЕНИЕ В ПРИРОДЕ; ПОЛУЧЕНИЕ. ХАРАКТЕРИСТИКА ОТДЕЛЬНЫХ ПРЕДСТАВИТЕЛЕЙ

Моносахариды - это кетонные или альдегидные производные многоатомных спиртов. Атомы углерода, водорода и кислорода, входящие в их состав, находятся в соотношении 1:2:1. Общая формула для простых сахаров - (СН2О)n. В зависимости от длины углеродного скелета (количества атомов углерода), их разделяют на: триозы-С3, тетрозы-С4, пентозы-С5, гексозы-С6 и т. д. Кроме того, сахара разделяют на:

Альдозы, имеющие в составе альдегидную группу, - С=О. К ним относится | Н глюкоза:

H H H H H
CH2OH - C - C - C - C - C
| | | | \\
OH OH OH OH OH

Кетозы, имеющие в составе кетонную группу, - C-. К ним, например, || относится фруктоза.

В растворах все сахара, начиная с пентоз, имеют циклическую форму; в линейной же форме присутствуют только триозы и тетрозы. При образовании циклической формы атом кислорода альдегидной группы связывается ковалентной связью с предпоследним атомом углерода цепи, в результате образуются полуацетали (в случае альдоз) и полукетали (в случае кетоз).

ХАРАКТЕРИСТИКА МОНОСАХАРИДОВ, ОТДЕЛЬНЫЕ ПРЕДСТАВИТЕЛИ

Из тетроз в процессах обмена наиболее важна эритроза. Этот сахар - один из промежуточных продуктов фотосинтеза. Пентозы встречаются в природных условиях главным образом как составные части молекул более сложно построенных веществ, например сложных полисахаридов, носящих название пентозанов, а также растительных камедей. Пентозы в значительном количестве (10-15 %) содержатся в древесине, соломе. В природе преимущественно встречается арабиноза. Она содержится в вишневом клее, свекле и аравийской камеди, откуда ее и получают. Рибоза и дезоксирибоза широко представлены в животном и растительном мире, это сахара, входящие в состав мономеров нуклеиновых кислот РНК и ДНК. Получают рибозу эпимеризацией арабинозы.

Ксилоза образуется при гидролизе полисахарида ксилозана, содержащегося в соломе, отрубях, древесине, шелухе подсолнечника. Продуктами различных типов брожения ксилозы являются молочная, уксусная, лимонная, янтарная и другие кислоты. Организмом человека ксилоза усваивается плохо. Гидролизаты, содержащие ксилозу, используются для выращивания некоторых видов дрожжей, они в качестве белкового источника применяются для кормления сельскохозяйственных животных. При восстановлении ксилозы получают спирт ксилит, его используют как заменитель сахара для больных диабетом. Широко применяют ксилит как стабилизатор влажности и пластификатор (в бумажной промышленности, парфюмерии, производстве целлофана). Он является одним из основных компонентов при получении ряда поверхностно-активных веществ, лаков, клеев.

Из гексозы наиболее широко распространены глюкоза, фруктоза, галактоза, их общая формула - С6Н12О6.

Глюкоза (виноградный сахар, декстроза) содержится в соке винограда и других сладких плодов и в небольших количествах - в организмах животных и человека. Глюкоза входит в состав важнейших дисахаридов - тростникового и виноградного сахаров. Высокомолекулярные полисахариды, т. е. крахмал, гликоген (животный крахмал) и клетчатка, целиком построены из остатков молекул глюкозы, соединенных друг с другом различными способами. Глюкоза - первичный источник энергии для клеток.

В крови человека глюкозы содержится 0,1-0,12 %, снижение показателя вызывает нарушение жизнедеятельности нервных и мышечных клеток, иногда сопровождаемое судорогами или обморочным состоянием. Уровень содержания глюкозы в крови регулируется сложным механизмом работы нервной системы и желез внутренней секреции. Одно из массовых тяжелых эндокринных заболеваний - сахарный диабет - связано с гипофункцией островковых зон поджелудочной железы. Сопровождается значительным снижением проницаемости мембраны мышечных и жировых клеток для глюкозы, что приводит к повышению содержания глюкозы в крови, а также в моче.

Глюкозу для медицинских целей получают путем очистки - перекристаллизации - технической глюкозы из водных или водно-спиртовых растворов. Глюкоза используется в текстильном производстве и в некоторых других производствах в качестве восстановителя. В медицине чистая глюкоза применяется в виде растворов для введения в кровь при ряде заболеваний и в виде таблеток. Из нее получают витамин С.

Галактоза вместе с глюкозой входит в состав некоторых гликозидов и полисахаридов. Остатки молекул галактозы входят в состав сложнейших биополимеров - ганглиозидов, или гликосфинголипидов. Они обнаружены в нервных узлах (ганглиях) человека и животных и содержатся также в ткани мозга, в селезенке в эритроцитах. Получают галактозу главным образом гидролизом молочного сахара.

Фруктоза (фруктовый сахар) в свободном состоянии содержится во фруктах, меде. Входит в состав многих сложных сахаров, например тростникового сахара, из которого она может быть получена гидролизом. Образует сложно построенный высокомолекулярный полисахарид инулин, содержащийся в некоторых растениях. Фруктозу получают также из инулина. Фруктоза - ценный пищевой сахар; она в 1,5 раза слаще сахарозы и в 3 раза слаще глюкозы. Она хорошо усваивается организмом. При восстановлении фруктозы образуются сорбит и маннит. Сорбит применяют как заменитель сахара в питании больных диабетом; кроме того, его используют для производства аскорбиновой кислоты (витамин С). При окислении фруктоза дает винную и щавелевую кислоту.

Дисахариды - типичные сахароподобные полисахариды. Это твердые вещества, или некристаллизующиеся сиропы, хорошо растворимые в воде. Как аморфные, так и кристаллические дисахариды обычно плавятся в некотором интервале температур и, как правило, с разложением. Дисахариды образуются в результате реакции конденсации между двумя моносахаридами, обычно гексозами. Связь между двумя моносахаридами называют гликозидной связью. Обычно она образуется между первым и четвертым углеродными атомами соседних моносахаридных единиц (1,4-гликозидная связь). Этот процесс может повторяться бессчетное число раз, в результате чего и возникают гигантские молекулы полисахаридов. После того как моносахаридные единицы соединятся друг с другом, их называют остатками. Таким образом мальтоза состоит из двух остатков глюкозы.

Среди дисахаридов наиболее широко распространены мальтоза (глюкоза + глюкоза), лактоза (глюкоза + галактоза), сахароза (глюкоза + фруктоза).

ОТДЕЛЬНЫЕ ПРЕДСТАВИТЕЛИ ДИСАХАРИДОВ

Мальтоза (солодовый сахар) имеет формулу С12Н22О11. Название возникло в связи со способом получения мальтозы: ее получают из крахмала при воздействии солода (лат. maltum - солод). В результате гидролиза мальтоза расщепляется на две молекулы глюкозы:

С12Н22О11 + Н2О = 2С6Н12О6

Солодовый сахар является промежуточным продуктом при гидролизе крахмала, он широко распространен в растительных и животных организмах. Солодовый сахар значительно менее сладок, чем тростниковый (в 0,6 раза при одинаковых концентрациях).

Лактоза (молочный сахар). Название этого дисахарида возникло в связи с его получением из молока (от лат. lactum - молоко). При гидролизе лактоза расщепляется на глюкозу и галактозу:

Лактозу получают из молока: в коровьем молоке ее содержится 4-5,5 %, в женском молоке - 5,5-8,4 %. Лактоза отличается от других сахаров отсутствием гигроскопичности: она не отсыревает. Молочный сахар применяется как фармацевтический препарат и питание для грудных детей. Лактоза в 4 или 5 раз менее сладка, чем сахароза.

Сахароза (тростниковый или свекловичный сахара). Название возникло в связи с ее получением либо из сахарной свеклы, либо из сахарного тростника. Тростниковый сахар был известен за много столетий до нашей эры. Лишь в середине XVIII в. этот дисахарид был обнаружен в сахарной свекле и только в начале XIX в. он был получен в производственных условиях. Сахароза очень распространена в растительном мире. Листья и семена всегда содержат небольшое количество сахарозы. Она содержится также в плодах (абрикосах, персиках, грушах, ананасах). Ее много в кленовом и пальмовом соках, кукурузе. Это наиболее известный и широко применяемый сахар. При гидролизе из него образуются глюкоза и фруктоза:

С12Н22О11 + Н2О = С6Н12О6 + С6Н12О6

Смесь равных количеств глюкозы и фруктозы, получающаяся в результате инверсии тростникового сахара (в связи с изменением в процессе гидролиза правого вращения раствора на левое), называется инвертным сахаром (инверсия вращения). Природным инвертным сахаром является мед, состоящий в основном из глюкозы и фруктозы.

Сахарозу получают в огромных количествах. Сахарная свекла содержит 16-20 % сахарозы, сахарный тростник - 14-26 %. Промытую свеклу измельчают и в аппаратах многократно извлекают сахарозу водой, имеющей температуру около 80 град. Полученную жидкость, содержащую, кроме сахарозы, большое количество различных примесей, обрабатывают известью. Известь осаждает в виде кальциевых солей ряд органических кислот, а также белки и некоторые другие вещества. Часть извести при этом образует с тростниковым сахаром растворимые в холодной воде кальциевые сахараты, которые разрушаются обработкой диоксидом углерода.

Осадок карбоната кальция отделяют фильтрацией, фильтрат после дополнительной очистки упаривают в вакууме до получения кашицеобразной массы. Выделившиеся кристаллы сахарозы отделяют при помощи центрифуг. Так получают сырой сахарный песок, имеющий желтоватый цвет, маточный раствор бурого цвета, некристаллизующийся сироп (свекловичная патока, или меласса). Сахарный песок очищают (рафинируют) и получают готовый продукт.

4. БИОЛОГИЧЕСКАЯ РОЛЬ БИОПОЛИМЕРОВ - ПОЛИСАХАРИДОВ

Полисахариды - высокомолекулярные (до 1000000 Да) полимерные соединения, состоящие из большого числа мономеров - сахаров, их общая формула Сx(Н2О)y. Наиболее часто встречающимся мономером полисахаридов является глюкоза, встречаются маноза, галактоза и другие сахара. Полисахариды делятся на:
- гомополисахариды, состоящие из молекул моносахаридов одного типа (так, крахмал и целлюлоза состоят только из глюкозы);
- гетерополисахариды, в состав которых в качестве мономеров могут входить несколько различных сахаров (гепарин).

Если в полисахариде присутствуют только 1,4= гликозидные связи, мы получим линейный, неразветвленный полимер (целлюлоза); если присутствуют как 1,4=, так и 1,6= связи, полимер будет разветвленным (гликоген). К числу наиболее важных полисахаридов относятся: целлюлоза, крахмал, гликоген, хитин.

Целлюлоза, или клетчатка (от лат. сellula - клеточка), является основным компонентом клеточной стенки растительных клеток. Это линейный полисахарид, состоящий из глюкозы, соединенных 1,4= связями. Клетчатка составляет от 50 до 70 % древесины. Хлопок представляет собой почти чистую клетчатку. Волокна льна и конопли состоят преимущественно из клетчатки. Наиболее чистыми образцами клетчатки является очищенная вата, получаемая из хлопка, и фильтровальная бумага.

Крахмал - разветвленный полисахарид растительного происхождения, состоящий из глюкозы. В полисахариде остатки глюкозы связаны 1,4= и 1,6= гликозидными связями. При их расщеплении растения получают глюкозу, необходимую в процессе их жизнедеятельности. Крахмал образуется при фотосинтезе в зеленых листьях в виде зерен. Эти зерна особенно легко обнаружить в микроскопе, используя известковую реакцию с йодом: крахмальные зерна окрашиваются в синий или сине-черный цвет.

По накоплению крахмальных зерен можно судить об интенсивности фотосинтеза. Крахмал в листьях расщепляется на моносахариды или олигосахариды и переносится в другие части растений, например в клубни картофеля или зерна злаков. Здесь вновь происходит отложение крахмала в виде зерен. Наибольшее содержание крахмала в следующих культурах:

Рис (зерно) - 62-82 %;
- кукуруза (зерно) - 65-75 %;
- пшеница (зерно) - 57-75 %;
- картофель (клубни) - 12-24 %.

В текстильной промышленности крахмал используется для производства загустителей красок. Он применяется в спичечной, бумажной, полиграфической промышленности, в переплетном деле. В медицине и фармакологии крахмал идет на приготовление присыпок, паст (густых мазей), а также необходим в производстве таблеток. Подвергая крахмал кислотному гидролизу, можно получить глюкозу в виде чистого кристаллического препарата или в виде патоки - окрашенного некристаллизующегося сиропа.

Налажено производства модифицированных крахмалов, подвергавшихся специальной обработке или содержащих улучшающие их свойства добавки. Модифицированные крахмалы широко применяются в различных отраслях промышленности.

Гликоген - более разветвленный, чем крахмал, полисахарид животного происхождения, состоящий из глюкозы. Он играет исключительно важную роль в организмах животных как запасной полисахарид: все процессы жизнедеятельности, в первую очередь мышечная работа, сопровождаются расщеплением гликогена, отдающего сосредоточенную в нем энергию. В тканях организма из гликогена в результате ряда сложных превращений может образовываться молочная кислота.

Гликоген содержится во всех животных тканях. Особенно его много в печени (до 20 %) и мышцах (до 4 %). Он присутствует также в некоторых низших растениях, дрожжах и грибах, его можно выделить путем обработки животных тканей 5-10 %-ной трихлоруксусной кислотой с последующим осаждением извлеченного гликогена спиртом. С йодом растворы гликогена дают окрашивание от винно-красного до красно-бурого, в зависимости от происхождения гликогена, вида животного и других условий. Окрашивание йодом исчезает при кипячении и вновь появляется при охлаждении.

Хитин по своей структуре и функции очень близок к целлюлозе - это тоже структурный полисахарид. Хитин встречается у некоторых грибов, где он играет в клеточных стенках опорную роль благодаря своей волокнистой структуре, а также у некоторых групп животных (особенно у членистоногих) в качестве важного компонента их наружного скелета. Строение хитина сходно со строением целлюлозы, его длинные параллельные цепи также собраны в пучки.

5. ХИМИЧЕСКИЕ СВОЙСТВА УГЛЕВОДОВ

Все моносахариды и некоторые дисахариды, в том числе мальтоза и лактоза, относятся к группе редуцирующих (восстанавливающих) сахаров. Сахароза - нередуцирующий сахар. Восстановительная способность сахаров зависит у альдоз от активности альдегидной группы, а у кетоз - от активности как кетогруппы, так и первичных спиртовых групп. У нередуцирующих сахаров эти группы не могут вступать в какие-либо реакции, потому что здесь они участвуют в образовании гликозидной связи. Две обычные реакции на редуцирующие сахара - реакция Бенедикта и реакция Фелинга - основаны на способности этих сахаров восстанавливать ион двухвалентной меди до одновалентной. В обеих реакциях используется щелочной раствор сульфата меди (2) (CuSO4), который восстанавливается до нерастворимого оксида меди (1) (Cu2O). Ионное уравнение: Cu2+ + e = Cu+ дает синий раствор, кирпично-красный осадок. Все полисахариды нередуцирующие.

ЗАКЛЮЧЕНИЕ

Основная роль углеводов связана с их энергетической функцией. При их ферментативном расщеплении и окислении выделяется энергия, которая используется клеткой. Полисахариды играют главным образом роль запасных продуктов и легко мобилизируемых источников энергии (например, крахмал и гликоген), а также используются в качестве строительного материала (целлюлоза и хитин).

Полисахариды удобны в качестве запасных веществ по ряду причин: будучи нерастворимы в воде, они не оказывают на клетку ни осмотического, ни химического влияния, что весьма важно при длительном хранении их в живой клетке: твердое, обезвоженное состояние полисахаридов увеличивает полезную массу продуктов запаса за счет экономии их объемов. При этом существенно уменьшается вероятность потребления этих продуктов болезнетворными бактериями, грибами и другим микроорганизмами, которые, как известно, не могут заглатывать пищу, а всасывают питательные вещества всей поверхностью тела. При необходимости запасные полисахариды легко могут быть превращены в простые сахара путем гидролиза. Кроме того, соединяясь с липидами и белками, углеводы образуют гликолипиды и гликопротеиды-два.

Конспект по экологии

Главнейшим источником энергии, определяющим тепловой баланс и термический режим биосферы Земли, является лучистая энергия Солнца.

Солнце освещает и обогревает Землю, поставляя энергию, которую зеленые растения используют для синтеза соединений, обеспечивающих их жизнедеятельность и потребляемых в пищу практически всеми остальными организмами. Кроме того, солнечная энергия поддерживает круговорот важнейших химических веществ и является движущей силой климатических и метеорологических систем, перераспределяющих тепло и влагу на земной поверхности.

Энергия Солнца излучается в космос в виде спектра ультрафиолетового, видимого светового и инфракрасного излучения и других форм лучистой или электромагнитной энергии.

Поверхности Земли достигают в основном ближнее ультрафиолетовое излучение, видимый свет и ближнее инфракрасное излучение. Около 34% лучистой энергии Солнца, достигшей поверхности Земли, сразу же отражается назад в космос облаками, пылью и другими веществами, находящимися в атмосфере, а также собственно поверхностью Земли. Подавляющая часть из остающихся 66% идет на нагревание атмосферы и суши, испарение и круговорот воды, преобразуется в энергию ветров. И лишь незначительная доля этой энергии (0,5%) улавливается зелеными растениями и используется в процессе фотосинтеза для образования органических соединений, необходимых для поддержания жизнедеятельности организмов.

Основная доля вредного ионизирующего излучения Солнца. Особенно ультрафиолетовой радиации, поглощается молекулами озона (О3) в верхней части атмосферы (стратосфере) и водяным паром в нижней части атмосферы. Без этого экранирующего эффекта большинство современных форм жизни на Земле не могло бы существовать.

Таким образом, все живое на Земле существует за счёт незагрязняющей среду и практически вечной солнечной энергии, количество которой относительно постоянно и избыточно.

Растения используют всего лишь 0,5 % солнечного света, достигающего Земли. Даже если бы люди существовали исключительно за счет солнечной энергии, они бы использовали еще меньшую часть ее. Таким образом, поступающей на Землю солнечной энергии вполне достаточно для удовлетворения любых мыслимых потребностей человечества. Поскольку вся солнечная энергия в конечном счете превращается в тепло, увеличение ее использования для хозяйственных нужд не должно повлиять на динамику биосферы. Солнечная энергия – абсолютно чистая энергия, имеющаяся в неисчерпаемом объеме и по неизменной цене (бесплатно). На ее поступление не влияют политическое эмбарго и экономические трудности. В то же время, она слишком рассеяна: чтобы она служила человечеству, ее надо сконцентрировать, и это препятствие вполне преодолимо.

Говоря об энергии, следует иметь в виду, что энергия – это способность производить работу или теплообмен между двумя объектами, обладающими разной температурой. Энергия различается по качеству или способности совершать полезную работу. Качество энергии – это мера ее эффективности. Энергия высокого качества характеризуется большой степенью упорядоченности, или концентрации, а значит, высокой способностью производить полезную работу. В качестве примеров носителей таких форм энергии можно привести электричество, каменный уголь, бензин, концентрированную солнечную энергию, а также высокотемпературное тепло и др. Энергии низкого качества свойственны неупорядоченность и малая способность производить полезную работу. Пример носителя такой энергии – низкотемпературное тепло в воздухе вокруг нас, в реке, озере, океане. Например, общее количество тепла в Атлантическом океане значительно превышает количество энергии высокого качества в нефтяных скважинах Саудовской Аравии. Но тепло настолько рассеяно в океане, что мы не в состоянии его использовать.

Говоря об энергии, следует напомнить о двух законах природы, которым энергия подчиняется.

Первый закон термодинамики (закон сохранения энергии): энергия не возникает и не исчезает, она лишь переходит из одной форму в другую. Закон подразумевает, что в результате превращений энергии никогда нельзя получить её больше, чем затрачено: выход энергии всегда равен её затратам; нельзя из ничего получить нечто, за все нужно платить.

Второй закон термодинамики: при любых превращениях энергии часть её теряется в виде тепла. Это низкотемпературное тепло обычно рассеивается в окружающей среде и неспособно выполнять полезную работу.

При сгорании бензина высококачественной химической энергии в двигателе автомобиля в механическую и электрическую энергию превращается около 1%, остальные 99% в виде бесполезного тепла рассеиваются в окружающей среде и, в конечном счете, теряются в космическом пространстве. В лампе накаливания 5% электрической энергии превращается в полезное световое излучение, а 95% в виде тепла рассеивается в окружающей среде. Согласно первому закону термодинамики, энергия никогда не истощится, поскольку она не может ни возникать, ни исчезать. Но согласно второму закону термодинамики, общее количество концентрированной высококачественной энергии, которую мы можем получить из всех источников, постоянно сокращается, превращаясь в низкокачественную энергию. Мы не только не можем получить нечто из ничего, мы не в состоянии нарушить выравнивание качества энергии.

Большая часть неотражённой земной поверхностью солнечной радиации, в соответствии со вторым законом термодинамики, преобразуется в низкотемпературную тепловую энергию (излучение «дальнего» ИК диапазона) и излучается обратно в космическое пространство; количество энергии, возвращающейся в космос в виде тепла, зависит от наличия в атмосфере молекул воды, диоксида углерода, метана, оксида азота, озона и некоторых форм твердых частиц. Эти вещества, действуя наподобие избирательного фильтра, позволяют некоторым высококачественным формам лучистой энергии Солнца пройти сквозь атмосферу к земной поверхности и в то же время задерживают и поглощают (и повторно излучают назад) часть возникающего потока низкокачественного теплового излучения Земли.

Одной из важнейших характеристик состояния термодинамической системы является энтропия (превращение – <греч.>) - отношение количества теплоты, введённого в систему или отведённого от неё, к термодинамической температуре: dS = dQ/T . Можно утверждать, что энтропия характеризует количество энергии в системе, недоступной для совершения работы, т. е. недоступной для использования. Система обладает низкой энтропией, если в ней происходит непрерывное рассеяние упорядоченной энергии и превращение её в другой, менее упорядоченный вид, например, превращение энергии света или пищи в тепловую энергию. Поэтому часто энтропию определяют как меру неупорядоченности системы. Важнейшей особенностью организмов является их способность создавать и поддерживать высокую степень внутренней упорядоченности, т. е. состояние с низкой энтропией.

Любое нагретое тело, в том числе и живое, будет отдавать тепло до тех пор, пока его температура не сравняется с температурой окружающей среды. В конечном счёте энергия любого тела может быть рассеяна в тепловой форме, после чего наступает состояние термодинамического равновесия, и любые энергетические процессы становятся невозможными, т. е. система приходит в состояние максимальной энтропии или минимальной упорядоченности.

Для того чтобы энтропия организма не возрастала в результате непрерывного рассеяния энергии путём её превращения из форм с высокой степенью упорядоченности (например, химической энергии пищи) в тепловую форму с минимальной степенью упорядоченности, организм должен непрерывно накапливать упорядоченную энергию извне, т. е. как бы извлекать извне "упорядоченность" или отрицательную энтропию.

Живые организмы извлекают отрицательную энтропию из пищи, используя упорядоченность ее химической энергии. Для того чтобы экологические системы и биосфера в целом имели возможность извлекать из окружающей среды отрицательную энтропию, необходима энергетическая дотация, которая в действительности и получается в виде даровой солнечной энергии. Растения в процессе автотрофного питания – фотосинтеза создают органическое вещество с повышенным уровнем упорядоченности его химических связей, что и обусловливает уменьшение энтропии. Травоядные животные поедают растения, которых, в свою очередь, поедают хищники и т. д.

Белки, жиры и углеводы помогают для организма стройматериалом и источником энергии.

Белки основной стройматериал, составляют 50% от сухой массы организма.

Белки в организме не запасаются, избыток белков преобразовывается в жиры либо углеводы. Сами белки из углеводов и липидов синтезировать запрещено, по причине того, что в жирах и углеводах нет азота. Недостаток белков в пище страшен, особенно для детей и подростков.

При окислении белков получается углекислый газ, вода и аммиак. Аммиак током крови доносится до печени и там преобразовывается в мочевину, которая выделяется с мочой и позже.

Углеводы основной источник энергии. При окислении глюкозы выделяется вода и углекислый газ.

Резервом, благодаря которому концентрация глюкозы в крови поддерживается на постоянном уровне, помогает запас гликогена в печени (запасающая функция). Избыток углеводов в организме преобразовывается в жиры.

Клетчатка (целлюлоза) усиливает моторику кишечника.

Жиры (липиды) запас энергии. При окислении жира выделяется вдвое больше энергии, чем при окислении грамма белка либо углевода, конечно вода и углекислый газ.

Жиры запасаются в подкожной жировой клетчатке и в прокладках между органами. Не считая запаса энергии, жировые ткани делают функции теплоизоляции, запаса воды и механической защиты.

Жиры в организме смогут образовываться из белков и из углеводов.

345. Наиболее страшен для ребёнка недостаток в пище
А) белков животного происхождения
Б) белков растительного происхождения
В) растительных углеводов
Г) животных жиров

391. Избыточное количество углеводов в организме ведет к
А) отравлению организма
Б) их превращению в белки
В) их превращению в жиры
Г) расщеплению на более простые вещества

544. В организме человека НЕ происходит превращение
А) белков в жиры
Б) углеводов в белки
В) углеводов в жиры
Г) органических веществ в неорганические

617. Стройматериалом и источником энергии для организма помогают
А) минеральные вещества
Б) углеводы и жиры
В) витамины
Г) ферменты

859. В организме человека Не имеет возможности происходить превращение
А) жиров в белки
Б) белков в углеводы
В) углеводов в жиры
Г) жиров в углеводы

1285. Главным источником энергии в организме являются
А) витамины
Б) ферменты
В) гормоны
Г) углеводы

1288. В клетках человека и животных в качестве стройматериала и источника энергии употребляются
А) гормоны и витамины
Б) вода и углекислый газ
В) неорганические вещества
Г) белки, жиры и углеводы

1287. В клетке липиды делают функцию
А) каталитическую
Б) транспортную
В) информационную
Г) энергетическую

1289. Жиры, как и глюкоза, делают в клетке функцию
А) строительную
Б) информационную
В) каталитическую
Г) энергетическую

1498. Вещества, которые содержат азот, образуются при биологическом окислении
А) белков
Б) жиров
В) углеводов
Г) глицерина

1715. Клетчатка, содержащаяся в сырых овощах и фруктах, употребляемых в пищу человеком, усиливает
А) пищеварение в желудке
Б) расщепление углеводов
В) моторную функцию кишечника
Г) всасывание питательных веществ в кровь

1945. Функция несложных углеводов в клетке
А) каталитическая
Б) энергетическая
В) хранение наследственной информации
Г) участие в биосинтезе белка

2081. Больше всего энергии выделяется при расщеплении 1 г
А) глюкозы
Б) белка
В) нуклеиновой кислоты
Г) жира

2127. Конечными продуктами обмена углеводов у человека являются
А) мочевина и этиловый спирт
Б) уксусная и молочная кислоты
В) пировиноградная и лимонная кислоты
Г) углекислый газ и вода

2138. Расщепление белков в организме человека завершается
А) выведением углекислого газа, воды и мочевины
Б) накоплением в клетках кислорода
В) превращением тепловой энергии в энергию химических связей
Г) образованием и накоплением антител в крови

2574. В организме человека конечными продуктами окисления органических веществ, не содержащих азота, являются
А) липиды
Б) вода и углекислый газ
В) аминокислоты
Г) глицерин и жирные кислоты

Ответы на тесты возможно взглянуть в разделе ЕГЭ