Сравнение прокариотов и эукариотов. Кто такие эукариоты и прокариоты: сравнительная характеристика клеток разных царств

Основные отличия прокариотических и эукариотических клеток?

  1. Все организмы, имеющие клеточное строение, делятся на две группы: предъядерные (прокариоты) и ядерные (эукариоты).
    Клетки прокариот, к которым относятся бактерии, в отличие от эукариот, имеют относительно простое строение. В прокариотической клетке нет организованного ядра, в ней содержится только одна хромосома, которая не отделена от остальной части клетки мембраной, а лежит непосредственно в цитоплазме. Однако в ней также записана вся наследственная информация бактериальной клетки.
  2. Все живые организмы на земле состоят из клеток. Различают два вида клеток, в зависимости от их организации: эукариоты и прокариоты.

    Эукариоты представляют собой надцарство живых организмов. В переводе с греческого языка эукариот обозначает владеющий ядром. Соответственно эти организмы в своем составе имеют ядро, в котором закодирована вся генетическая информация. К ним относятся грибы, растения и животные.

    Прокариоты это живые организмы, в клетках которых ядро отсутствует. Характерными представителями прокариот являются бактерии и цианобактерии.

    Время возникновения

    Первыми приблизительно 3,5 миллиарда лет тому назад возникли прокариоты, которые через 2,4 миллиарда лет положили начало развитию эукариотических клеток.

    Эукариоты и прокариоты сильно отличаются по размеру друг от друга. Так диаметр эукариотической клетки 0,01-0,1 мм, а прокариотической 0,0005-0,01 мм. Объем эукариота порядка 10000 раз больше, чем объем прокариота.

    Прокариоты имеют кольцевую ДНК, которая располагается в нуклеоиде. Эта клеточная область отделена от остальной цитоплазмы при помощи мембраны. ДНК никак не связана с РНК и белками, отсутствуют хромосомы.

    ДНК эукариотических клеток линейная, располагается в ядре, в котором имеются хромосомы.

    Клеточное деление эукариот и прокариот

    Прокариоты размножаются в основном простым делением пополам, в то время как эукариоты делятся при помощи митоза, мейоза или сочетанием этих двух способов.

    Органеллы

    У эукариотических клеток имеются органеллы, характеризующиеся наличием собственного генетического аппарата: митохондрии и пластиды. Они окружены мембраной и имеют способность к размножению посредством деления.

    Стиральная машина автомат Новинка от Hotpoint-Ariston! Супертихая узкая стиральная машина на 8 кг
    Мультиварки. Официальный магазин В наличии более 50 моделей от 2230р. Настоящий магазин мультиварок:
    Яндекс. ДиректВсе объявления
    В прокариотических клетках также встречаются органеллы, но в меньшем количестве и не ограниченные мембраной.

    Фагоцитоз

    Эукариоты, в отличие от прокариот, имеют способность к перевариванию твердых частиц, заключая их в мембранный пузырек. Существует мнение, что эта особенность возникла в ответ на необходимость полноценно обеспечить питанием клетку во много раз большую прокариотической. Следствием наличия у эукариот фагоцитоза стало появление первых хищников.

    Двигательные приспособления

    Жгутики эукариот имеют достаточно сложное строение. Они представляют собой тонкие клеточные выросты, окруженные тремя слоями мембраны, содержащие 9 пар микротрубочек по периферии и две в центре. Имеют толщину до 0,1 миллиметра и способны изгибаться по всей длине. Кроме жгутиков, для эукариот характерно наличие ресничек. Они по своей структуре идентичны жгутикам, отличаясь только размером. Длина ресничек не более 0,01 миллиметра.

    Некоторые прокариоты также имеют жгутики, однако, очень тонкие, около 20 нанометров в диаметре. Они представляют собой пассивно вращающиеся полые белковые нити.

    TheDifference.ru определил, что разница между прокариотами и эукариотами заключается в следующем:

    Эукариоты в основном многоклеточные организмы, размножающиеся посредством митоза и мейоза. Прокариоты одноклеточные, размножаются делением надвое.
    ДНК прокариот свободно находится в цитоплазме и имеет форму кольца. У эукариот имеется ядро, где и расположена линейная ДНК.
    Размеры эукариотической клетки значительно превышают размеры прокариотической, при этом эукариоты характеризуются наличием фагоцитоза, который способствует достаточному питанию клетки.

Самое очевидное отличие прокариот от эукариот заключается в наличии у последних ядра , что отражено в названии этих групп: «карио» с древнегреческого переводится как ядро, «про» - до, «эу» - хорошо. Отсюда прокариоты - это доядерные организмы, эукариоты - ядерные.

Однако это далеко не единственное и возможно не главное отличие прокариотических организмов от эукариот . В клетках прокариот вообще нет мембранных органоидов (за редким исключением) - митохондрий, хлоропластов, комплекса Гольджи, эндоплазматической сети, лизосом. Их функции выполняют выросты (впячивания) клеточной мембраны, на которых располагаются различные пигменты и ферменты, обеспечивающие процессы жизнедеятельности.

У прокариот нет характерных для эукариот хромосом. Их основной генетический материал - это нуклеоид , обычно имеющий форму кольца. В эукариотических клетках хромосомы представляют собой комплексы ДНК и белков-гистонов (играют важную роль в упаковке ДНК). Эти химические комплексы называются хроматином . Нуклеоид прокариот не содержит гистонов, а форму ему придают связанные с ним молекулы РНК.

Хромосомы эукариот находятся в ядре. У прокариот нуклеоид находится в цитоплазме и обычно крепится в одном месте к мембране клетки.

Кроме нуклеоида в прокариотических клетках бывает разное количество плазмид - нуклеоидов существенно меньшего размера, чем основной.

Количество генов в нуклеоиде прокариот на порядок меньше, чем в хромосомах. У эукариот есть множество генов, выполняющих регуляторную функцию по отношению к другим генам. Это дает возможность эукариотическим клеткам многоклеточного организма, содержащим одну и ту же генетическую информацию, специализироваться; изменяя свой метаболизм, более гибко реагировать на изменения внешней и внутренней среды. Отличается и структура генов. У прокариот гены в ДНК располагаются группами - оперонами. Каждый оперон транскрибируется как единое целое.

Отличия прокариот от эукариот есть и в процессах транскрипции и трансляции. Самое главное заключается в том, что в прокариотических клетках эти процессы могут протекать одновременно на одной молекуле матричной (информационной) РНК: в то время как она еще синтезируется на ДНК, на готовом ее конце уже «сидят» рибосомы и синтезируют белок. В эукариотических клетках мРНК после транскрипции претерпевает так называемое созревание. И только после этого на ней может синтезироваться белок.

Рибосомы прокариот меньше (коэффициент седиментации 70S), чем у эукариот (80S). Отличается количество белков и молекул РНК в составе субъединиц рибосом. Следует отметить, что рибосомы (а также генетический материал) митохондрий и хлоропластов схожи с прокариотами, что может говорить об их происхождении от древних прокариотических организмов, оказавшихся внутри клетки-хозяина.

Прокариоты отличаются обычно более сложным строением своих оболочек. Кроме цитоплазматической мембраны и клеточной стенки у них также имеется капсула и другие образования, в зависимости от типа прокариотического организма. Клеточная стенка выполняет опорную функцию и препятствует проникновению вредных веществ. В состав клеточной стенки бактерий входит муреин (гликопептид). Среди эукариот клеточная стенка есть у растений (ее основной компонент - целлюлоза), у грибов - хитин.

Прокариотические клетки делятся бинарным делением. У них нет сложных процессов клеточного деления (митоза и мейоза) , характерных для эукариот. Хотя перед делением нуклеоид удваивается, так же как хроматин в хромосомах. В жизненном цикле эукариот наблюдается чередование диплоидной и гаплоидной фаз. При этом обычно преобладает диплоидная фаза. В отличие от них у прокариот такого нет.

Клетки эукариот различны по размерам, но в любом случае существенно крупнее прокариотических (в десятки раз).

Питательные вещества в клетки прокариот поступают только с помощью осмоса. У эукариотических клеток кроме этого может также наблюдаться фаго- и пиноцитоз («захват» пищи и жидкости с помощью цитоплазматической мембраны).

В целом отличие прокариот от эукариот заключается в однозначно более сложном строении последних. Считается, что клетки прокариотического типа возникли путем абиогенеза (длительной химической эволюции в условиях ранней Земли). Эукариоты появились позже от прокариотов, путем их объединения (симбиотическая, а также химерная гипотезы) или эволюции отдельно взятых представителей (инвагинационная гипотеза). Сложность клеток эукариот позволила им организовать многоклеточный организм, в процессе эволюции обеспечить все основное разнообразие жизни на Земле.

Таблица отличий прокариот от эукариот

Признак Прокариоты Эукариоты
Клеточное ядро Нет Есть
Мембранные органоиды Нет. Их функции выполняют впячивания клеточной мембраны, на которых располагаются пигменты и ферменты. Митохондрии, пластиды, лизосомы, ЭПС, комплекс Гольджи
Оболочки клетки Более сложные, бывают различные капсулы. Клеточная стенка состоит из муреина. Основной компонент клеточной стенки целлюлоза (у растений) или хитин (у грибов). У клеток животных клеточной стенки нет.
Генетический материал Существенно меньше. Представлен нуклеоидом и плазмидами, которые меют кольцевую форму и находятся в цитоплазме. Объем наследственной информации значительный. Хромосомы (состоят из ДНК и белков). Характерна диплоидность.
Деление Бинарное деление клетки. Есть митоз и мейоз.
Многоклеточность Для прокариот не характерна. Представлены как одноклеточными, так и многоклеточными формами.
Рибосомы Мельче Крупнее
Обмен веществ Более разнообразный (гетеротрофы, фотосинтезирующие и хемосинтезирующие различными способами автотрофы; анаэробное и аэробное дыхание). Автотрофность только у растений за счет фотосинтеза. Почти все эукариоты аэробы.
Происхождение Из неживой природы в процессе химической и предбиологической эволюции. От прокариот в процессе их биологической эволюции.

Вопрос 1. Каковы отличия в строении эукари­отической и прокариотической клеток?

У прокариот нет настоящего оформленного ядра (греч. karyon — ядро). Их ДНК представ­ляет собой одну кольцевую молекулу, свобод­но располагающуюся в цитоплазме и не окру­женную мембраной. У прокариотических кле­ток отсутствуют пластиды, митохондрии, эндоплазматическая сеть, аппарат Гольджи, Лизосомы. Рибосомы есть как у прокариот, так и у эукариот (у ядерных — более круп­ные). Жгутик прокариотической клетки тонь­ше и работает по иному принципу, чем жгутик эукариотов. Эукариотическими организмами являются грибы, растения, животные — одно­клеточные и многоклеточные; прокариота­ми — бактерии и синезеленые водоросли (ци­анобактерии).

Вопрос 2. Расскажите о пино- и фагоцитозе. Чем различаются эти процессы?

Мембрана клетки — подвижное образова­ние, способное путем формирования впячиваний и выростов захватывать объекты внешней среды. Этот процесс называют эндоцитозом. Причина эндоцитоза — сложные биохимиче­ские реакции, происходящие в цитоплазме и связанные в первую очередь с изменением тре­тичной структуры внутриклеточных белков. Если клетка захватывает каплю жидкости — это пиноцитоз, если твердую частицу — фагоцитоз. В результате образуются пиноцитарные или фагоцитарные вакуоли (мембран­ные пузырьки). Процесс, обратный эндоцитозу (выброс из клетки содержимого вакуолей), называют экзоцитозом.

Вопрос 3. Раскройте взаимосвязь строения и функций мембраны клеток.

Известно, что основой любой мембраны яв­ляется бислой (двойной слой) фосфолипидов, в котором гидрофильные «головки» молекул (глицерин) обращены наружу, а гидрофобные остатки жирных кислот — внутрь. С липид­ным бислоем связаны молекулы белков, кото­рые могут примыкать к мембране с любой из сторон, погружаться в нее или даже пронизы­вать. Положение клеточной мембраны на гра­нице клетки и окружающей среды определяет ее основные функции. Прочный, эластичный, легко восстанавливающийся бислой является барьером, обеспечивающим постоянство вну­триклеточной среды и предохраняющим цитоплазму от проникновения чужеродных веществ. Транспортная функция мембраны имеет избирательный характер. Мелкие неза­ряженные молекулы (0 2 , N 2) легко проникают непосредственно через бислой. Более крупные и/или заряженные частицы (Na + , К + , некото­рые гормоны) проходят через специальные белковые поры (каналы) или транспортируют­ся белками-переносчиками. Будучи подвиж­ной структурой, клеточная мембрана может также осуществлять транспорт веществ пу­тем эндо- и экзоцитоза.

Вопрос 4. Какие органоиды клетки находятся в цитоплазме?

Органоиды, расположенные в цитоплазме эукариотической клетки, можно разделить на три группы: одномембранные, двухмем­бранные и немембранные. К одномембран­ным органоидам относят эндоплазматическую сеть (гладкую и шероховатую), аппарат Гольд­жи, Лизосомы и вакуоли. Двухмембранные ор­ганоиды — это пластиды и митохондрии; не­мембранные — рибосомы, цитоскелет и кле­точный центр.

Вопрос 5. Охарактеризуйте органоиды цито­плазмы и их значение в жизнедеятельности клетки.

Эндоплазматическая сеть (ЭПС) пред­ставляет собой совокупность вакуолей, кана­лов и трубочек. Она образует внутри цитоплаз­мы единую сеть, объединенную с наружной мембраной ядерной оболочки. Различают гладкую и шероховатую ЭПС. Гладкая ЭПС участвует в синтезе липидов и углеводов, а также обезвреживает токсичные вещества. На поверхности мембран шероховатой ЭПС располагаются рибосомы.

Аппарат Гольджи — одномембранный органоид, входящий в состав единой мембран­ной сети клетки и представляющий собой стоп­ку плоских цистерн. В нем происходит окон­чательная сортировка и упаковка продуктов жизнедеятельности клетки в мембранные пу­зырьки (вакуоли). В числе прочего аппарат Гольджи формирует Лизосомы и обеспечивает экзоцитоз.

Лизосомы — мелкие мембранные пузырь­ки, которые содержат ферменты для перевари­вания питательных веществ. Лизосомы слива­ются с эндоцитозной вакуолью, формируя пи­щеварительную вакуоль. Если содержимое лизосом высвобождается внутри самой клет­ки, наступает ее автолиз (самопереваривание клетки).

Митохондрии относят к двухмембран­ным органоидам. Их внешняя мембрана глад­кая, а внутренняя образует складки (крис­ты). Митохондрии — энергетические станции клетки, их основная функция — синтез АТФ.

Пластиды представляют собой двухмем­бранные органоиды растительных клеток. Существует три типа пластид: хлоропласты, хромопласты и лейкопласты. Бесцветные лей­копласты запасают крахмал; зеленые хлоро­пласты осуществляют фотосинтез; оранжевые, желтые и красные хромопласты обеспечивают окраску плодов и цветов (привлечение опыли­телей и распространителей семян). Считается установленным, что в далеком прошлом мито­хондрии и пластиды произошли от прокариот, «проглоченных» эукариотической клеткой и вступивших с нею в симбиоз. Митохондрии и пластиды имеют кольцевую ДНК, самостоя­тельно синтезируют часть белков, а их рибосо­мы мельче эукариотических.

Рибосомы — мелкие многочисленные не­мембранные органоиды, образованные двумя субъединицами — большой и малой. Субъеди­ницы состоят из белка и рибосомальной РНК. Функцией рибосом является синтез белка. Часть рибосом находится непосредственно в цитоплазме, а часть — на мембранах шерохо­ватой ЭПС.

Клеточный центр — органоид немем­бранного строения клеток животных, грибов и низших растений. Состоит из двух центрио­лей, по форме сходных с цилиндрами и состоя­щих из мельчайших белковых трубочек; уча­ствует в образовании веретена деления.

Вакуоль представляет собой мембранный пузырек, заполненный клеточным соком. Она обязательно присутствует в растительной клетке. Функция вакуоли — накопление во­ды, солей, питательных веществ. Здесь могут также содержаться пигменты (синие, фиолето­вые) и накапливаться отходы обмена веществ.

Все живые организмы подразделяются на доклеточные и клеточные. К доклеточным относятся вирусы и фаги. Вторая группа, клеточные, делится на прокариоты и эукариоты, которые представляют собой предъядерные и ядерные организмы.

Прокариоты

Первые клеточные, прокариоты, возникли на Земле более 3 миллиардов лет тому назад. Это было величайшим скачком в развитии жизни. Прокариоты представляют собой бактерии. Строение у них относительно простое. Наследственная информация, ДНК, находится у них в примитивной, содержащей мало белка кольцевидной хромосоме. Она располагается в особом участке цитоплазмы, нуклеоиде, не отделенном от остальной клетки мембраной. Основное, чем отличаются прокариоты и эукариоты друг от друга, это то, что в клетках первого типа настоящее ядро отсутствует.

Цитоплазма предъядерных клеток имеет намного меньше клеточных структур. Из них известны рибосомы, более мелкие по сравнению с рибосомами эукариоидных клеток. Роль митохондрий в прокариотах принадлежит простым мембранным структурам. Отсутствует в них и хлоропласт. Прокариоты имеют плазматическую мембрану, над которой находится клеточная оболочка. Они отличаются от эукариот значительно меньшими размерами.В некоторых случаях в прокариотах могут быть так называемые плазмиды - небольшие, в виде кольца,

Эукариоты

Все ядерные клетки отличаются общим планом строения и общим происхождением. Они возникли из предъядерных клеток 1,2 млрд. лет назад. Строение их значительно сложнее. И прокариоты, и эукариоты имеют клеточную мембрану. Но в остальном их структурные и биохимические особенности во многом отличаются. Самое главное отличие - то, что в ядерных клетках имеется истинное ядро, в котором хранится их генетическая информация.

Ядро отграничено от цитоплазмы специальной мембраной, состоящей из наружного и внутреннего слоев. Она похожа на плазматическую мембрану, но содержит поры. Благодаря им осуществляется обмен между цитоплазмой и ядром. Геном клетки состоит из целого набора хромосом, этим прокариоты и эукариоты также отличаются друг от друга. ДНК в хромосомах эукариот связана с белками-гистонами.

В находятся ядрышки, в которых образуются рибосомы. Бесструктурная масса, кариоплазма, окружает хромосомы и ядрышки. Каждому виду животных и растений свойственен свой, строго определенный набор хромосом. При делении клеток они удваиваются и затем распределяются по дочерним клеткам

Если рассматривать прокариоты и эукариоты, различия у них видны и в цитоплазме клеток.

Для клеток растений свойственно наличие крупной центральной вакуоли и пластид. может отодвигать ядро к периферии клетки. Питательный резервный углевод растительной клетки - крахмал. Снаружи растительные клетки покрыты состоящей из целлюлозы. В клеточном центре нет центриоли, которую можно увидеть только у водорослей.

Животные клетки не имеют центральной вакуоли, пластид и плотной клеточной оболочки. В центре клетки имеется центриоль. Резервный углевод в животных клетках - гликоген.

У клеток грибов центриоль бывает не всегда. Стенка клеток состоит из хитина, в цитоплазме пластидов нет, но в центре клетки центральная вакуоль имеется. Резерв углеводов у них ‑ тоже гликоген.

В цитоплазме эукариот имеются митохондрии, лизосомы, эндоплазматическая сеть, органоиды движения. Рибосомы у них значительно крупнее, чем рибосомы прокариот. Цитоплазма клетки разделена на отдельные отсеки, компартменты, при помощи специальных оболочек, состоящих из липидов. В каждом из них протекают свои биохимические процессы. Это почти не встречается у прокариот.

В целом прокариоты и эукариоты выражают законы эволюции, для которой характерно движение от более простых форм к более сложным.

Однако предъядерным клеткам свойственна большая пластичность и многообразие обменных процессов. Многие бактерии могут получать энергию за счет света или химических реакций, существовать в среде, лишенной кислорода (анаэробные бактерии). Благодаря этому они вписываются в картину современного мира.

Основная статья: Сравнение строения клеток бактерий, растений и животных

Наиболее важным отличием эукариот от прокариот долгое время считалось наличие оформленного ядра и мембранных органоидов. Однако к 1970-1980-м гг. стало ясно, что это лишь следствие более глубинных различий в организации цитоскелета. Некоторое время считалось, что цитоскелет свойственен только эукариотам, но в середине 1990-х гг. белки, гомологичные основным белкам цитоскелета эукариот, были обнаружены и у бактерий.

Сравнение прокариотической и эукариотической клеток

Именно наличие специфическим образом устроенного цитоскелета позволяет эукариотам создать систему подвижных внутренних мембранных органоидов. Кроме того, цитоскелет позволяет осуществлять эндо- и экзоцитоз (как предполагается, именно благодаря эндоцитозу в эукариотных клетках появились внутриклеточные симбионты, в том числе митохондрии и пластиды). Другая важнейшая функция цитоскелета эукариот - обеспечение деления ядра (митоз и мейоз) и тела (цитотомия) эукариотной клетки (деление прокариотических клеток организовано проще). Различия в строении цитоскелета объясняют и другие отличия про- и эукариот - например, постоянство и простоту форм прокариотических клеток и значительное разнообразие формы и способность к её изменению у эукариотических, а также относительно большие размеры последних. Так, размеры прокариотических клеток составляют в среднем 0,5-5мкм, размеры эукариотических - в среднем от 10 до 50 мкм. Кроме того, только среди эукариот попадаются поистине гигантские клетки, такие как массивные яйцеклетки акул или страусов (в птичьем яйце весь желток - это одна огромная яйцеклетка), нейроны крупных млекопитающих, отростки которых, укрепленные цитоскелетом, могут достигать десятков сантиметров в длину.

Сравнительная характеристика клеток эукариот и прокариот
Признак Прокариоты Эукариоты
Размеры клеток Средний диаметр 0,5-10 мкм Средний диаметр 10-100 мкм
Организация генетического материала
Форма, количество и расположение молекул ДНК Обычно имеется одна кольцевая молекула ДНК, размещенная в цитоплазме Обычно есть несколько линейных молекул ДНК - хромосом, локализованных в ядре
Компактизация ДНК У бактерий ДНК компактизируется без участия гистонов . У архей ДНК ассоциирована с белками гистонами Имеется хроматин: ДНК компактизируется в комплексе с белками гистонами .
Организация генома У бактерий экономный геном: отсутствуют интроны и большие некодирующие участки . Гены объединены в опероны . У архей имеются интронные участки особой структуры . Большей частью геном не экономный: имеется экзон-интронная организация генов, большие участки некодирующей ДНК Гены не объединены в опероны .
Деление
Тип деления Простое бинарное деление Мейоз или митоз
Образование веретена деления Веретено деления не образуется Веретено деления образуется
Органеллы
Тип рибосом 70S рибосомы 80S рибосомы
Наличие мембранных органелл Окруженные мембранами органеллы отсутствуют, иногда плазмалемма образует выпячивание внутрь клетки Имеется большое количество одномембранных и двумембранных органелл
Тип жгутика Жгутик простой, не содержит микротрубочки, не окружен мембраной, диаметр около 20 нм Жгутики состоят из микротрубочек, расположенных по принципу «9+2», окружены плазматической мембраной, диаметр около 200 нм

Анаплазия



Разрушение клеточной структуры (например, при злокачественных опухолях) носит название анаплазии.

Межклеточные контакты

Основная статья: Межклеточные контакты

У высших животных и растений клетки объединены в ткани и органы, в составе которых они взаимодействуют между собой, в частности, благодаря прямым физическим контактам. В растительных тканях отдельные клетки соединяются между собой с помощью плазмодесм, а животные образуют различные типы клеточных контактов.

Плазмодесмы растений - это тонкие цитоплазматические каналы, которые проходят через клеточные стенки соседних клеток, соединяя их между собой. Полость плазмодесм устлана плазмалеммой. Совокупность всех клеток, объединенных плазмодесмами, называется симпластом, между ними возможен регулируемый транспорт веществ.

Межклеточные контакты позвоночных животных на основе строения и функций разделяют на три основных типа: якорные (англ. anchoring junctions ), включающие адгезионные контакты и десмосомы, плотные или изоляционные (англ. tight junction ) и щелевые или коммуникационные (англ. gap junction ). Кроме того, некоторые особые виды соединений между клетками, такие как химические синапсы нервной системы и иммунологические синапсы (между T-лимфоцитами и антигенпредставляющими клетками), объединяют по функциональному признаку в отдельную группу: контакты, которые передают сигналы, (англ. signal-relaying junction ). Однако в межклеточном сигнализировании могут участвовать и якорные, щелевые и плотные контакты .

Основные характеристики межклеточных контактов позвоночных животных
Якорные контакты Плотные контакты Щелевые контакты
Якорные контакты физически соединяют клетки между собой, обеспечивают целостность и прочность тканей, в частности эпителиальных и мышечных. При образовании контактов этого типа элементы цитоскелета соседних клеток как бы объединяются в единую структуру: с помощью специальных якорных белков они прикрепляются к внутриклеточной части белков кадгенринов, проходящих через плазматическую мембрану, и в межклеточном пространстве прикрепляются к кадгеринам соседних клеток. Различают два основных типа якорных контактов: адгезионные, объединяющие микрофиламенты соседних клеток; и десмосомы, в образовании которых принимают участиепромежуточные филаменты. Плотные (изоляционные) контакты обеспечивают максимальное сближение мембран соседних клеток, между которыми остается промежуток в 2-3 нм. Этот тип контактов чаще всего возникает вэпителии. Плотные контакты образуют непрерывные пояса вокруг каждой клетки, крепко прижимая их друг к другу и предотвращая протекание межклеточной жидкости между ними. Такие контакты необходимы, в частности, для обеспеченияводонепроницаемости кожи. В формировании тесных контактов принимают участие белки окклюдины, клаудины и другие. Щелевые (коммуникационные) контакты - это небольшие участки, на которыхплазмалеммы соседних клеток приближены друг к другу на расстояние 2-4 нм и пронизаны белковыми комплексами - коннексонами. Каждый коннексон состоит из шести трансмембранных белков коннексинов, которые окружают небольшие гидрофильные поры диаметром в 1,5 нм. Через эти каналы от одной клетки к другой могут проходить ионы и другие небольшие гидрофильные молекулы. Таким образом происходит общение между соседними клетками. Щелевые контакты характерны для большинства тканей животного организма: в частности, эпителиальной, соединительной, сердечной мышцы, нервной (где формируют электрические синапсы) и др.

Клеточный цикл

Основная статья: Клеточный цикл

Деление клетки

Клетки лука в различных фазахклеточного цикла

Митоз клеток мыши на стадиителофазы: веретено деления (микротрубочки) закрашены оранжевым, актиновые филаменты - зеленым, хроматин - голубым

Деление раковых клеток (оптический микроскоп, замедленная киносъёмка)

Основная статья: Деление клетки

Дополнительные сведения: Амитоз, Митоз, и Мейоз

См. также: Деление прокариотических клеток

Деление эукариотических клеток]

Амито́з - прямое деление клетки , происходит в соматических клетках эукариот реже, чем митоз. В большинстве случаев амитоз наблюдается в клетках со сниженной митотической активностью: это стареющие или патологически измененные клетки, часто обреченные на гибель (клетки зародышевых оболочек млекопитающих, опухолевые клетки и другие). При амитозе морфологически сохраняется интерфазное состояние ядра, хорошо видны ядрышко и ядерная оболочка. Репликация ДНК отсутствует. Спирализация хроматина не происходит, хромосомы не выявляются. Клетка сохраняет свойственную ей функциональную активность, которая почти полностью исчезает при митозе. Таково, например, деление макронуклеусов многих инфузорий, где без образования веретенапроисходит сегрегация коротких фрагментов хромосом. При амитозе делится только ядро, причём без образования веретена деления, поэтому наследственный материал распределяется случайным образом. Отсутствие цитокинеза приводит к образованию двуядерных клеток, которые в дальнейшем не способны вступать в нормальный митотический цикл. При повторных амитозах могут образовываться многоядерные клетки.

Мито́з (от греч. μιτος - нить) - непрямое деление клетки, наиболее распространённый способ репродукции эукариотических клеток, один из фундаментальных процессов онтогенеза. Митотическое деление обеспечивает рост многоклеточных эукариот за счёт увеличения популяции тканевых клеток. Биологическое значение митоза заключается в строго одинаковом распределении хромосоммежду дочерними ядрами, что обеспечивает образование генетически идентичных дочерних клеток и сохраняет преемственность в ряду клеточных поколений . Дробление оплодотворённого яйца и рост большинства тканей у животных также происходит путём митотических делений . На основании морфологических особенностей митоз условно подразделяется на:

· профазу,

· прометафазу,

· метафазу,

· анафазу,

· телофазу.

Продолжительность митоза в среднем составляет 1-2 часа . В клетках животных митоз, как правило, длится 30-60 минут, а в растительных - 2-3 часа . Клетки человека за 70 лет суммарно претерпевают порядка 10 14 клеточных делений .

Мейоз (от греч. meiosis - уменьшение) или редукционное деление клетки - деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом - образованием специализированных половых клеток или гамет из недифференцированных стволовых. Уменьшение числа хромосом в результате мейоза в жизненном цикле ведёт к переходу от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса. В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма. Этот же механизм лежит в основе стерильности межвидовых гибридов. Определённые ограничения на конъюгацию хромосом накладывают и хромосомные мутации (масштабные делеции, дупликации, инверсии или транслокации).