Основные этапы создания и внедрения лекарственных средств. Создание лекарственных препаратов

Путь от получения индивидуального химического соединения до внедрения препарата в медицинскую практику занимает большой отрезок времени и включает в себя следующие этапы:

1) тонкий органический, биоорганический или микробиологический

синтез, идентификация и выделение соединений. Скрининг (отбор БАС) in vitro;

2) создание модели лекарственной формы;

3) проверка биологической активности на животных (in vivo);

4) нахождение оптимального метода синтеза, проверка биологической активности;

5) разработка лекарственной формы;

6) исследование острой и хронической токсичности, мутагенности, тератотоксичности, пирогенности;

7) изучение фармакокинетики и фармакодинамики (в т. ч. и синтез препарата меченного изотопами 3 Н и 14 С);

8) разработка лабораторного регламента производства;

9) клинические испытания;

10) разработка опытно-промышленного регламента, производственного регламента, ВФС, утверждение ВФС;

11) разрешение фармкомитета, приказ Минздрава РФ на применение лекарственного средства. Оформление документации на производство.

Общая стоимость разработки нового лекарственного средства достигает 400 млн долларов США.

Для уменьшения стоимости разработки ЛС используются достижения молекулярной биологии – целенаправленный синтез . Примером такого синтеза может служить создание антагонистов метаболитов нуклеинового обмена – 5-фторурацила, 6-меркаптопурина, флударабина. Еще одним примером является противораковый препарат мелфалан (рацемат – сарколизин).

В самом начале пути создания противоопухолевых препаратов использовали эмбихин – N- метил-N- бис(b-хлорэтил)амин.

Лечение этим препаратом ярко описано А.И. Солженицыным в романе «Раковый корпус». Препарат высокотоксичен, процент излеченных больных был мал (А.И. Солженицыну повезло). Академик АМН Л.Ф. Ларионов предложил ввести азотипритную группу в метаболит – фенилаланин. Так был синтезирован сарколизин, дающий хорошие результаты при лечении рака яичка. В настоящее время используют не рацемат, а оптически индивидуальный препарат – мелфалан. Блестящим примером целенаправленного синтеза является ингибитор превращения неактивного агиотензина I в активный агиотензин II – препарат каптоприл. Агиотензин I является декапептидом, а агиотензин II октапептидом. Карбоксипептидаза А отщепляет с карбоксиконца пептида последовательно лейцин и гистидин, но не может работать в том случае, если предыдущей аминокислотой является пролин.

Знание тонкого механизма работы фермента позволило синтезировать его ингибитор. Ангиотензин II обладает выраженной биологической активностью – вызывает сужение артериол, прессорное действие в 40 раз превосходит действие норадреналина. Каптоприл ингибирует карбоксипептидазу, его используют для лечения гипертонии. Тот же самый принцип был использован при синтезе препарата эналаприл. Рассмотренные препараты – метотрексат, азометония бромид, атенолол и фенилэфрин были получены в результате целенаправленного синтеза.

Другим направлением поиска БАВ является массовый скрининг – проверка биологической активности вновь синтезированных соединений. Ферменты и рецепторы имеют в пространственной структуре «карманы», в которые входят метаболиты или медиаторы. Во взаимодействии метаболита с ферментом принимают участие как полярные группировки, так и гидрофобные. Поэтому при отборе новых соединений для изучения биологической активности необходимо в молекуле иметь сочетание полярных и гидрофобных групп. В качестве гидрофобной части – Alk, Alk(F) n , а также циклические соединения. Но гетероциклы кроме гидрофобной части имеют уже и заряд. В качестве полярных групп используют: OH; O-Alk, OAc, NH 2 ; NHAlk, N(Alk) 2 , NHAc, SO 2 NHR, COOH, C=O, COOR, CONR 1 R 2 , NO 2 , SH, полярные гидрофобные – Cl, Br, J, F. Эти группы, введенные в гидрофобную молекулу, часто придают соединению биологическую активность, и их называют фармакофорными группами.

Введение фармакофорных групп не должно быть беспорядочным. Желательно, чтобы гидрофобные участки и полярные группы располагались на определенном расстоянии. Тем самым они могут моделировать либо метаболит, либо природное лекарственное средство. Этот принцип подобия был заложен в синтезе местноанестезирующих препаратов – анестезина и новокаина. Природным продуктом, обладающим мощным анестезирующим действием, является кокаин. Однако использование наркотического средства далеко небезопасно. В данном случае моделирование структуры природного продукта привело к положительным результатам. Структуры соединений приведены на схеме:

Поиск таких лекарственных средств занял около двадцати лет.

Еще в 80-е гг. XX в. отбор БАС проводился на животных, при этом химику-синтетику требовалось для первичных испытаний нарабатывать десятки граммов соединения. Статистика показывает, что одно новое БАС удается найти при «слепом» синтезе среди 100 000 вновь синтезированных веществ. Для уменьшения затрат скрининг стали проводить на изолированных органах, а затем и на клетках. Причем количество нарабатываемого вещества сократилось до сотен миллиграммов. И, естественно, увеличилось количество изучаемых веществ. Противоопухолевая и противовирусная активность новых соединений в настоящее время изучается на клетках. Живые и убитые клетки при окрашивании имеют различную окраску. Чем больше находят мертвых клеток человеческого штамма злокачественной опухоли под действием испытуемого вещества, тем оно более активно.В институте рака Национального института здоровья США, испытания проводятся на 55 штаммах человеческих опухолей, адаптированных для роста в условиях in vitro. При изучении противовирусной активности клетки, зараженные вирусом, прибавляют к раствору препарата. Ведут подсчет живых клеток.

При исследовании активности вновь синтезированных соединений подлинная революция произошла благодаря успехам биотехнологии. Доступность биомакромолекул (ферментов, белков рецепторов, РНК и т. п.), помещенных на твердый носитель, позволяет с помощью измерения биолюминесценции определять их ингибирование или стимуляцию под действием нового вещества. В настоящее время испытывается in vitro в фирме «Байер» 20 000 новых соединений в год. При этом существенно возрастает роль химиков синтетиков, которые должны обеспечить массовую наработку новых соединений и билдинг-блоков. Возникла так называемая комбинаторная химия (принципы комбинаторной химии рассмотрены в отдельном разделе). Основой для выбора такого синтеза является компьютерный анализ баз данных, в т. ч. и по наличию фармакофорных групп в определенных положениях молекул. Для создания «библиотеки» новых соединений с помощью методов комбинаторной химии необходимо знать закономерности протекания химических реакций. Это является одной из задач данного курса.

Еще одним направлением поиска БАВ служит модификация уже известных лекарственных соединений. Целью изменения структуры ЛС является снижение побочного действия препарата, а также повышение его активности – увеличение терапевтического индекса I t . Определенную роль играет изучение количественной взаимосвязи структура – активность. В качестве одного из примеров можно привести использование метода Хэнча, основанного на определении или расчете по аддитивной схеме липофильности соединения. В качестве меры липофильности используют коэффициент распределения (Р) вещества в системе октанол – вода. В общем виде уравнение Хэнча можно представить следующим выражением

lg 1/c = a 0 + a 1 lgP – a 2 (lgP) 2 + a 3 s + a 4 E s

где с – любая экспериментальная величина, характеризующая биологическую активность; a i – постоянные, полученные при обработке экспериментальных данных; Р –коэффициент распределения октанол – вода (Р = С октанол /С вода, С – концентрация вещества в каждой из фаз), параметры s, E s отражают электронные и стерические параметры молекулы.

Анализ уравнения показывает, что lg 1/c = f lgP, т.е. кривая проходит через максимум, соответствующий веществу с наибольшей активностью. Уравнение в грубом приближении описывает две стадии действия ЛС:

1) транспорт к участку действия;

2) взаимодействие с биомакромолекулой.

В качестве примера можно привести уравнение, связывающее Р с противоопухолевой активностью нитрозоалкилмочевин:

lg 1/c = - 0,061(lgP) 2 + 0,038lgP + 1,31

Седативная активность барбитуратов, изученная на мышах, связана с липофильностью следующим уравнением:

lg 1/c = 0,928 + 1,763 lgP - 0,327(lgP) 2

Активность, изученная на кроликах, дает несколько другое соотношение:

lg 1/c = 0,602 + 2,221 lgP - 0,326(lgP) 2

Хотя коэффициенты в этих уравнениях разные, общая тенденция сохраняется. Уравнение Хэнча сыграло свою роль при разработке современных компьютерных программ отбора веществ для изучения их биологической активности. В результате скрининга были найдены рассмотренные препараты циметидин и фентоламин. Изучение их механизма действия привело к открытию a-адренорецепторов и Н 2 -рецепторов.

При планировании синтеза ряда новых веществ целесообразно задаваться определенной молекулярно-биологической гипотезой, т.е. приближаться к целенаправленному синтезу. После нахождения in vitro активности соединения обязательно проверяют действие соединения in vivo. На последующих стадиях к будущему препарату предъявляют требования:

1) высокая эффективность лечебного эффекта;

2) максимальная величина I t , минимальное побочное действие;

3) после оказания лечебного действия препарат должен инактивироваться и выводиться из организма;

4) препарат не должен вызывать неприятных ощущений (вкус, запах, внешний вид);

5) препарат должен быть стабильным, минимальный срок хранения препарата должен быть не менее двух лет.

Обычным требованием к синтетическому препарату, за немногими исключениями, является высокая чистота субстанции. Как правило, содержание основного вещества в субстанции должно быть не менее 98 – 99 %. Наличие примесей регламентируется Фармакопейной статьей. При изменении метода синтеза необходимо проверять препарат на биоэквивалентность с ранее применявшимся ЛС.

1.2.2. Разработка плана синтеза

Каждое лекарственное средство может быть синтезировано несколькими альтернативными методами с использованием различных видов исходных продуктов (сырья). Появление новых видов полупродуктов, реакций и технологических процессов может резко изменить метод получения даже известных препаратов. Поэтому необходимо наработать практику составления плана синтеза БАВ на основе знания теории прохождения химических процессов органического синтеза, его конкретных условий и особенностей технологического оформления.

При разработке плана синтеза имеются два основных подхода – синтетический и ретросинтетический. Первый предполагает обычный подход: исходя из известных видов сырья, наметить последовательность реакций. Вторым методом разработки альтернативных путей получения БАВ является ретросинтетический подход к планированию синтеза. Прежде всего для его освоения необходимо привести терминологию:

1. Этот знак Þ трансформация – мысленная операция расчленения молекулы при ретросинтетическом анализе, противоположная знаку реакции.

2. После расчленения молекулы на части возникают заряженные осколки Х + Y¯ - синтоны.

3. Частицам Х + и Y¯ необходимо подобрать реальное химическое соединение, в котором будут либо те же заряды, либо d + , d¯ - синтетические эквиваленты . Синтетический эквивалент – реальное химическое соединение, позволяющее ввести синтон в молекулу в процессе ее конструирования.

4. БАВ – целевое соединение.

Далее, при трансформации необходимо расставить заряды синтонов так, чтобы отрицательный заряд находился на атоме, имеющем более высокую электроотрицательность, а положительный на менее электроотрицательном. В качестве примера можно рассмотреть ретросинтетический анализ молекулы парацетамола.

При трансформации молекулы разрываем связь С-N. Отрицательный заряд остается на группе NH, а положительный – на ацетильной группе. Соответственно синтетическими эквивалентами будут п -аминофенол и уксусный ангидрид или хлористый ацетил. Синтетический подход к разработке плана синтеза показан на схеме. Технический п -аминофенол не годится для получения парацетамола, т. к. содержит до 5 % продуктов окисления и других примесей, а очистка экономически невыгодна. Для синтеза препарата необходимо использовать свежеприготовленный продукт. Он может быть получен восстановлением п -нитрозофенола или п -нитрофенола. Пока в промышленности используют восстановление п -нитрофенола (причины этого рассмотрены в разделе «Реакции нитрозирования»).

В свою очередь п -нитрофенол может быть синтезирован нитрованием фенола или гидролизом п -нитрохлорбензола. В случае нитрования фенола возникают технологические трудности из-за энергичного протекания реакции нитрования, сопровождающегося некоторым осмолением реакционной массы. Кроме того, велики энергозатраты на разделение о- и п -изомеров. Таким образом, наиболее рационально получать п -нитрофенол гидролизом нитрохлорбензола, который является промышленно производимым продуктом. Даже на этом простейшем примере видно, что для ретросинтетического анализа необходимо уверенное знание органических реакций, их механизма, представления об источниках сырья и его доступности. Возможности разработки технологии производства обусловлены условиями проведения реакций, аппаратурным оформлением процессов, вопросами максимального использования сырья, а также вопросами экономики и экологии.

После составления альтернативных планов получения препарата разрабатывают оптимальный метод промышленного синтеза (ОМПС). Разработка ОМПС требует учета следующих факторов:

1) минимальное количество стадий. Каждая стадия – это затраты времени и сырья, увеличение количества отходов. Синтез должен быть по возможности коротким. Желательно использовать реакции, которые осуществляются в одну стадию или, по крайней мере, не требуют выделения промежуточных продуктов;

2) выход на каждой стадии. В идеале выход должен быть количественным (реально – очень редко), но хотя бы максимально возможным. Желательно, чтобы выделение продукта было простым и доступным;

3) хемоселективность реакции. С практической точки зрения имеет исключительное значение проведение реакции по одному из нескольких реакционных центров исходного соединения (региоселективность) или получение одного из возможных стереоизомеров (стереоселективность). Учет этого требования помогает избежать кропотливой работы по разделению изомеров и уменьшает количество отходов производства;

4) условия реакции. Превращение должно протекать в легкодостижимых условиях и не должно сопровождаться использованием или выделением высокопожаро-, взрывоопасных либо токсичных веществ;

5) процесс не должен ни при каких условиях привести к экологической катастрофе;

6) побочные продукты процесса должны быть легко удаляемыми и в идеале должны быть используемы либо легко подвергаться обезвреживанию.

В реальных условиях производства сложность заключается в том, что учет всех этих факторов приводит к противоречивым результатам, и ОМПС становится неоднозначным. Технолог длжен отдать предпочтение тем методам, которые дают максимальный экономический эффект, но без ущерба экологии.


1.3. сырьевая база

химико-фармацевтической промышленности

Основные продукты, которые получают с помощью тонкого, основного, нефтеоргсинтеза, лесохимии, коксохимического и микробиологического производства.

Для планирования синтеза конкретного лекарственного препарата и технологического оформления процессов необходимо в первую очередь обратиться к литературе и выяснить состояние промышленной разработки в нашей стране и за рубежом. Вторым шагом является оценка имеющихся либо вновь разработанных альтернативных методов получения препарата с точки зрения использования различных видов сырья в каждом методе, его стоимость и доступность. Для примера: в синтезе препарата необходимо использовать п -нитрохлорбензол. Его производят на Березниковском химзаводе, Рубежанском химкомбинате (Украина) и фирме Merk (Германия). Стоимость 1 т продукта одинакова, но транспортные расходы весьма отличаются. К тому же необходимо оценить и надежность поставщика. Безусловно, самым надежным будет его производство на своем заводе, но стоимость крупнотоннажного производства, конечно же ниже, чем своего небольшого.

Основные отрасли промышленности, которые поставляют сырье для промышленного получения синтетических ЛС в химико-фармацевтической промышленности (ХФП):

1) химическая переработка каменного угля, нефти, газа, древесины;

2) выделение продуктов из сырья растительного и животного происхож-дения;

3) микробиологический синтез.

Рассмотрим более подробно каждый из источников.

  • ЛЕКАРСТВЕННЫЕ СРЕДСТВА, РЕГУЛИРУЮЩИЕ ФУНКЦИИ ПЕРИФЕРИЧЕСКОГО ОТДЕЛА НЕРВНОЙ СИСТЕМЫ
  • А. ЛЕКАРСТВЕННЫЕ СРЕДСТВА, ВЛИЯЮЩИЕ НА АФФЕРЕНТНУЮ ИННЕРВАЦИЮ (ГЛАВЫ 1, 2)
  • ГЛАВА 1 ЛЕКАРСТВЕННЫЕ СРЕДСТВА, ПОНИЖАЮЩИЕ ЧУВСТВИТЕЛЬНОСТЬ ОКОНЧАНИЙ АФФЕРЕНТНЫХ НЕРВОВ ИЛИ ПРЕПЯТСТВУЮЩИЕ ИХ ВОЗБУЖДЕНИЮ
  • ГЛАВА 2 ЛЕКАРСТВЕННЫЕ СРЕДСТВА, СТИМУЛИРУЮЩИЕ ОКОНЧАНИЯ АФФЕРЕНТНЫХ НЕРВОВ
  • Б. ЛЕКАРСТВЕННЫЕ СРЕДСТВА, ВЛИЯЮЩИЕ НА ЭФФЕРЕНТНУЮ ИННЕРВАЦИЮ (ГЛАВЫ 3, 4)
  • ЛЕКАРСТВЕННЫЕ СРЕДСТВА, РЕГУЛИРУЮЩИЕ ФУНКЦИИ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ (ГЛАВЫ 5-12)
  • ЛЕКАРСТВЕННЫЕ СРЕДСТВА, РЕГУЛИРУЮЩИЕ ФУНКЦИИ ИСПОЛНИТЕЛЬНЫХ ОРГАНОВ И СИСТЕМ (ГЛАВЫ 13-19) ГЛАВА 13 ЛЕКАРСТВЕННЫЕ СРЕДСТВА, ВЛИЯЮЩИЕ НА ФУНКЦИИ ОРГАНОВ ДЫХАНИЯ
  • ГЛАВА 14 ЛЕКАРСТВЕННЫЕ СРЕДСТВА, ВЛИЯЮЩИЕ НА СЕРДЕЧНО-СОСУДИСТУЮ СИСТЕМУ
  • ГЛАВА 15 ЛЕКАРСТВЕННЫЕ СРЕДСТВА, ВЛИЯЮЩИЕ НА ФУНКЦИИ ОРГАНОВ ПИЩЕВАРЕНИЯ
  • ГЛАВА 18 ЛЕКАРСТВЕННЫЕ СРЕДСТВА, ВЛИЯЮЩИЕ НА КРОВЕТВОРЕНИЕ
  • ГЛАВА 19 ЛЕКАРСТВЕННЫЕ СРЕДСТВА, ВЛИЯЮЩИЕ НА АГРЕГАЦИЮ ТРОМБОЦИТОВ, СВЕРТЫВАНИЕ КРОВИ И ФИБРИНОЛИЗ
  • ЛЕКАРСТВЕННЫЕ СРЕДСТВА, РЕГУЛИРУЮЩИЕ ПРОЦЕССЫ ОБМЕНА ВЕЩЕСТВ (ГЛАВЫ 20-25) ГЛАВА 20 ГОРМОНАЛЬНЫЕ ПРЕПАРАТЫ
  • ГЛАВА 22 СРЕДСТВА, ПРИМЕНЯЕМЫЕ ПРИ ГИПЕРЛИПОПРОТЕИНЕМИИ (ПРОТИВОАТЕРОСКЛЕРОТИЧЕСКИЕ СРЕДСТВА)
  • ГЛАВА 24 СРЕДСТВА, ПРИМЕНЯЕМЫЕ ДЛЯ ЛЕЧЕНИЯ И ПРОФИЛАКТИКИ ОСТЕОПОРОЗА
  • ЛЕКАРСТВЕННЫЕ СРЕДСТВА, УГНЕТАЮЩИЕ ВОСПАЛЕНИЕ И ВЛИЯЮЩИЕ НА ИММУННЫЕ ПРОЦЕССЫ (ГЛАВЫ 26-27) ГЛАВА 26 ПРОТИВОВОСПАЛИТЕЛЬНЫЕ СРЕДСТВА
  • ПРОТИВОМИКРОБНЫЕ И ПРОТИВОПАРАЗИТАРНЫЕ СРЕДСТВА (ГЛАВЫ 28-33)
  • ГЛАВА 29 АНТИБАКТЕРИАЛЬНЫЕ ХИМИОТЕРАПЕВТИЧЕСКИЕ СРЕДСТВА 1
  • СРЕДСТВА, ПРИМЕНЯЕМЫЕ ПРИ ЗЛОКАЧЕСТВЕННЫХ НОВООБРАЗОВАНИЯХ ГЛАВА 34 ПРОТИВООПУХОЛЕВЫЕ (ПРОТИВОБЛАСТОМНЫЕ) СРЕДСТВА 1
  • 3. О СОЗДАНИИ НОВЫХ ЛЕКАРСТВЕННЫХ СРЕДСТВ

    3. О СОЗДАНИИ НОВЫХ ЛЕКАРСТВЕННЫХ СРЕДСТВ

    Прогресс фармакологии характеризуется непрерывным поиском и созданием новых, более активных и безопасных препаратов. Путь их от химического соединения до лекарственного средства представлен на схеме 1.1.

    В последнее время в получении новых лекарственных средств все большее значение приобретают фундаментальные исследования. Они касаются не только химических (теоретической химии, физической химии и др.), но и сугубо биологических проблем. Успехи молекулярной биологии, молекулярной генетики, молекулярной фармакологии стали существенным образом сказываться на таком прикладном аспекте фармакологии, как создание новых препаратов. Действительно, открытие многих эндогенных лигандов, вторичных передатчиков, пресинаптических рецепторов, нейромодуляторов, выделение отдельных рецепторов, разработка методов исследования функции ионных каналов и связывания веществ с рецепторами, успехи генной инженерии и т.п. - все это сыграло решающую роль в определении наиболее перспективных направлений конструирования новых лекарственных средств.

    Большая значимость фармакодинамических исследований для решения прикладных задач современной фармакологии очевидна. Так, открытие механизма действия нестероидных противовоспалительных средств принципиально изменило пути поиска и оценки таких препаратов. Новое направление в фармакологии связано с выделением, широким исследованием и внедрением в медицинскую практику простагландинов. Открытие системы простациклин- тромбоксан явилось серьезной научной основой для целенаправленного поиска и практического применения антиагрегантов. Выделение энкефалинов и эндорфинов стимулировало исследования по синтезу и изучению опиоидных пептидов с разным спектром рецепторного действия. Установление роли протонового насоса в секреции хлористоводородной кислоты желудка привело к созданию неизвестных ранее препаратов - ингибиторов протонового насоса. Открытие эндотелиального релаксирующего фактора (NO) позволило

    Схема 1.1. Последовательность создания и внедрения лекарственных средств.

    Примечание. МЗ РФ - Министерство здравоохранения РФ.

    объяснить механизм сосудорасширяющего действия м-холиномиметиков. Эти работы способствовали также выяснению механизма вазодилатирующего эффекта нитроглицерина и натрия нитропруссида, что важно для дальнейших поисков новых физиологически активных соединений. Исследование механизмов фибринолиза позволило создать ценный избирательно действующий фибринолитик - тканевый активатор профибринолизина. Таких примеров можно привести много.

    Создание лекарственных средств обычно начинается с исследований химиков и фармакологов, творческое содружество которых является основой для «конструирования» новых препаратов.

    Поиск новых лекарственных средств развивается по следующим направлениям.

    I. Химический синтез препаратов А. Направленный синтез:

    1) воспроизведение биогенных веществ;

    2) создание антиметаболитов;

    3) модификация молекул соединений с известной биологической активностью;

    4) изучение структуры субстрата, с которым взаимодействует лекарственное средство;

    5) сочетание фрагментов структур двух соединений с необходимыми свойствами;

    6) синтез, основанный на изучении химических превращений веществ в организме (пролекарства; средства, влияющие на механизмы биотрансформации веществ).

    Б. Эмпирический путь:

    1) случайные находки;

    2) скрининг.

    II. Получение препаратов из лекарственного сырья и выделение индивидуальных веществ:

    1) животного происхождения;

    2) растительного происхождения;

    3) из минералов.

    III. Выделение лекарственных веществ, являющихся продуктами жизне- деятельности грибов и микроорганизмов; биотехнология (клеточная и генная ин- женерия)

    Как уже отмечалось, в настоящее время лекарственные средства получают главным образом посредством химического синтеза. Один из важных путей направленного синтеза заключается в воспроизведении биогенных веществ, образующихся в живых организмах. Так, например, были синтезированы адреналин, норадреналин, γ-аминомасляная кислота, простагландины, ряд гормонов и другие физиологически активные соединения.

    Поиск антиметаболитов (антагонистов естественных метаболитов) также привел к получению новых лекарственных средств. Принцип создания антиметаболитов заключается в синтезе структурных аналогов естественных метаболитов, оказывающих противоположное метаболитам действие. Например, антибактериальные средства сульфаниламиды сходны по строению с парааминобензойной кислотой (см. ниже), необходимой для жизнедеятельности микроорганизмов, и являются ее антиметаболитами. Изменяя структуру фрагментов молекулы ацетилхолина, также можно получить его антагонисты. Ниже

    приведено строение ацетилхолина и его антагониста - ганглиоблокатора гигрония. В обоих случаях имеется явная структурная аналогия в каждой из пар соединений.

    Один из наиболее распространенных путей изыскания новых лекарственных средств - химическая модификация соединений с известной биологической активностью. Главная задача таких исследований заключается в создании новых препаратов (более активных, менее токсичных), выгодно отличающихся от уже известных. Исходными соединениями могут служить естественные вещества растительного (рис. I.8) и животного происхождения, а также синтетические вещества. Так, на основе гидрокортизона, продуцируемого корой надпочечника, синтезированы многие значительно более активные глюкокортикоиды, в меньшей степени влияющие на водно-солевой обмен, чем их прототип. Известны сотни синтезированных сульфаниламидов, барбитуратов и других соединений, из которых лишь отдельные вещества, структура которых обеспечивает необходимые фармакотерапевтические свойства, внедрены в медицинскую практику. Подобные исследования рядов соединений направлены также на решение одной из основных проблем фармакологии - выяснение зависимости между химическим строением веществ, их физико-химическими свойствами и биологической активностью. Установление таких закономерностей позволяет проводить синтез препаратов более целенаправленно. При этом важно выяснить, какие химические группировки и особенности структуры определяют основные эффекты действия исследуемых веществ.

    В последние годы наметились новые подходы к созданию лекарственных препаратов. За основу берется не биологически активное вещество, как это делалось ранее, а субстрат, с которым оно взаимодействует (рецептор, фермент и т.п.). Для таких исследований необходимы максимально подробные данные о трехмерной структуре тех макромолекул, которые являются основной «мишенью» для препарата. В настоящее время имеется банк таких данных, включающих значительное число ферментов и нуклеиновых кислот. Прогрессу в этом направлении способствовал ряд факторов. Прежде всего был усовершенствован рентгеноструктурный анализ, а также разработана спектроскопия, основанная на ядерно-магнитном резонансе. Последний метод открыл принципиально новые возможности, так как позволил устанавливать трехмерную структуру веществ в растворе, т.е. в некристаллическом состоянии. Существенным моментом явилось и то, что с помощью генной инженерии удалось получить достаточное количество субстратов для подробного химического и физико-химического исследования.

    Используя имеющиеся данные о свойствах многих макромолекул, удается с помощью компьютеров моделировать их структуру. Это дает четкое представление о геометрии не только всей молекулы, но и ее активных центров, взаимодействующих с лигандами. Исследуются особенности топографии поверхности

    Рис. I.8. (I-IV) Получение препаратов из растительного сырья и создание их синтетических заменителей (на примере курареподобных средств).

    I. Первоначально из ряда растений Южной Америки индейцами был выделен стрельный яд - кураре, вызывающий паралич скелетных мышц.

    а, б - растения, из которых получают кураре; в - высушенные тыквенные горшочки с кураре и орудия охоты индейцев; г - охота с помощью кураре. В длинные трубки (духовые ружья) индейцы помещали маленькие легкие стрелы с остриями, смазанными кураре; энергичным выдохом охотник посылал стрелу в цель; из места попадания стрелы кураре всасывалось, наступал паралич мышц, и животное становилось добычей охотников.

    II. В 1935 г. было установлено химическое строение одного из основных алкалоидов кураре - тубокурарина.

    III. В медицине очищенное кураре, содержащее смесь алкалоидов (препараты курарин, интокострин), начали применять с 1942 г. Затем стали использовать раствор алкалоида тубокурарина хлорида (лекарственный препарат известен также под названием «тубарин»). Тубокурарина хлорид применяют для расслабления скелетных мышц при проведении хирургических операций.

    IV. В дальнейшем были получены многие синтетические курареподобные средства. При их создании исходили из структуры тубокурарина хлорида, имеющего 2 катионных центра (N+- N+), расположенных на определенном расстоянии друг от друга.

    субстрата, характер его структурных элементов и возможные виды межатомного взаимодействия с эндогенными веществами или ксенобиотиками. С другой стороны, компьютерное моделирование молекул, использование графических систем и соответствующих статистических методов позволяют составить достаточно полное представление о трехмерной структуре фармакологических веществ и распределении их электронных полей. Такая суммарная информация о физиологически активных веществах и субстрате должна способствовать эффективному конструированию потенциальных лигандов с высокими комплементарностью и аффинитетом. До сих пор о таких возможностях можно было только мечтать, сейчас это становится реальностью.

    Генная инженерия открывает дополнительные возможности исследования значимости отдельных компонентов рецептора для их специфического связывания с агонистами или антагонистами. Этими методами удается создавать комплексы с отдельными субъединицами рецепторов, субстраты без предполагаемых мест связывания лигандов, белковые структуры с нарушенным составом или последовательностью аминокислот и т.д.

    Не приходится сомневаться в том, что мы находимся на пороге принципиальных изменений в тактике создания новых препаратов.

    Привлекает внимание возможность создания новых препаратов на основе изучения их химических превращений в организме. Эти исследования развиваются в двух направлениях. Первое направление связано с созданием так называемых пролекарств. Они представляют собой либо комплексы «вещество-носитель - активное вещество», либо являются биопрекурзорами.

    При создании комплексов «вещество-носитель-активное вещество» чаще всего имеется в виду направленный транспорт. «Вещество-носитель» обычно соединяется с активным веществом за счет ковалентных связей. Высвобождается активное соединение под влиянием соответствующих ферментов на месте действия вещества. Желательно, чтобы носитель распознавался клеткой-«мишенью». В этом случае можно добиться значительной избирательности действия.

    Функцию носителей могут выполнять белки, пептиды и другие соединения. Так, например, можно получить моноклональные антитела к специфическим антигенам эпителия молочных желез. Такие антитела-носители в комплексе с противобластомными средствами, очевидно, могут быть испытаны при лечении диссеминированного рака молочной железы. Из пептидных гормонов в качестве носителя представляет интерес β-меланотропин, который распознается злокачественными клетками меланомы. Гликопротеины могут довольно избирательно взаимодействовать с гепатоцитами и некоторыми клетками гепатомы.

    Избирательное расширение почечных сосудов наблюдается при использовании γ-глутамил-ДОФА, который подвергается в почках метаболическим превращениям, приводящим к высвобождению дофамина.

    Иногда «вещества-носители» используют для транспорта препаратов через биологические мембраны. Так, известно, что ампициллин плохо всасывается из кишечника (около 40%). Его эстерифицированное липофильное пролекарство - бакампициллин - абсорбируется из пищеварительного тракта на 98-99%. Сам бакампициллин неактивен; противомикробная активность проявляется только при отщеплении эстеразами в сыворотке крови ампициллина.

    Для облегчения прохождения через биологические барьеры обычно используют липофильные соединения. Помимо уже приведенного примера, можно назвать цетиловый эфир γ-аминомасляная кислота (ГАМК), который в отличие от ГАМК легко проникает в ткани мозга. Хорошо проходит через роговую оболочку глаза фармакологически инертный дипивалиновый эфир адреналина. В тканях глаза он подвергается энзиматическому гидролизу, что приводит к локальному образованию адреналина. В связи с этим дипивалиновый эфир адреналина, названный дипивефрином, оказался эффективным при лечении глаукомы.

    Другая разновидность пролекарств получила название биопрекурзоров (или метаболических прекурзоров). В отличие от комплекса «вещество-носитель- активное вещество», основанного на временной связи обоих компонентов, биопрекурзор представляет собой новое химическое вещество. В организме из него образуется другое соединение - метаболит, который и является активным веществом. Примеры образования в организме активных метаболитов хорошо известны (пронтозил-сульфаниламид, имипрамин-дезметилимипрамин, L-ДОФА-до- фамин и др.). По этому же принципу был синтезирован про-2-РАМ, который в отличие от 2-РАМ хорошо проникает в ЦНС, где высвобождается активный реактиватор ацетилхолинэстеразы 2-РАМ.

    Помимо повышения селективности действия, увеличения липофильности и соответственно биодоступности, пролекарства могут быть использованы

    для создания водорастворимых препаратов (для парентерального введения), а также для устранения нежелательных органолептических и физико-химических свойств.

    Второе направление, основанное на исследовании биотрансформации веществ, предусматривает изучение механизмов их химических превращений. Знание ферментативных процессов, обеспечивающих метаболизм веществ, позволяет создавать препараты, которые изменяют активность ферментов. Так, например, синтезированы ингибиторы ацетилхолинэстеразы (прозерин и другие антихолинэстеразные средства), которые усиливают и пролонгируют действие естественного медиатора ацетилхолина. Получены также ингибиторы фермента МАО, участвующей в инактивации норадреналина, дофамина, серотонина (к ним относятся антидепрессант ниаламид и др.). Известны вещества, которые индуцируют (усиливают) синтез ферментов, участвующих в процессах детоксикации химических соединений (например, фенобарбитал).

    Помимо направленного синтеза, до сих пор сохраняет определенное значение эмпирический путь получения лекарственных средств. Ряд препаратов был введен в медицинскую практику в результате случайных находок. Так, снижение уровня сахара крови, обнаруженное при использовании сульфаниламидов, привело к синтезу их производных с выраженными гипогликемическими свойствами. Сейчас они широко применяются при лечении сахарного диабета (бутамид и аналогичные ему препараты). Действие тетурама (антабуса), используемого при лечении алкоголизма, также было обнаружено случайно в связи с его применением в промышленном производстве при изготовлении резины.

    Одной из разновидностей эмпирического поиска является скрининг 1 . В этом случае любые химические соединения, которые могут быть предназначены и для немедицинских целей, проверяют на биологическую активность с использованием разнообразных методик. Скрининг - весьма трудоемкий и малоэффективный путь эмпирического поиска лекарственных веществ. Однако иногда он неизбежен, особенно если исследуется новый класс химических соединений, свойства которых, исходя из их структуры, трудно прогнозировать.

    В арсенале лекарственных средств, помимо синтетических препаратов, значительное место занимают препараты и индивидуальные вещества из лекарственного сырья (растительного, животного происхождения и из минералов; табл. I.2). Таким путем получены многие широко применяемые медикаменты не только в виде более или менее очищенных препаратов (галеновы, новогаленовы, органопрепараты), но также в виде индивидуальных химических соединений (алкалоиды 2 , гликозиды 3). Так, из опия выделяют алкалоиды морфин, кодеин, папаверин, из раувольфии змеевидной - резерпин, из наперстянки - сердечные гликозиды дигитоксин, дигоксин, из ряда эндокринных желез - гормоны.

    1 От англ. to screen - просеивать.

    2 Алкалоиды - азотистые органические соединения, содержащиеся главным образом в растениях. Свободные алкалоиды представляют собой основания [отсюда название алкалоидов: al-qili (арабск.) - щелочь, eidos (греч.) - вид]. В растениях они обычно содержатся в виде солей. Многие алкалоиды обладают высокой биологической активностью (морфин, атропин, пилокарпин, никотин и др.).

    3 Гликозиды - группа органических соединений растительного происхождения, распадающихся при воздействии ферментов или кислот на сахар, или гликон (от греч. glykys - сладкий), и несахаристую часть, или агликон. Ряд гликозидов используется в качестве лекарственных средств (строфантин, дигоксин и др.).

    Таблица I.2. Препараты природного происхождения

    Некоторые лекарственные вещества являются продуктами жизнедеятельности грибов и микроорганизмов.

    Успешное развитие этого пути привело к созданию современной биотехнологии, заложившей основы для создания нового поколения лекарственных средств. В фармацевтической промышленности уже сейчас происходят большие изменения, а в ближайшей перспективе ожидаются радикальные перемены. Связано это с бурным развитием биотехнологии. В принципе биотехнология была известна давно. Уже в 40-е годы ХХ в. стали получать пенициллин методом ферментации из культуры определенных видов плесневого гриба пенициллиум. Эта технология была использована и при биосинтезе других антибиотиков. Однако в середине 70-х годов произошел резкий скачок в развитии биотехнологии. Это связано с двумя крупными открытиями: разработкой гибридомной технологии (клеточная инженерия) и метода рекомбинантных ДНК (генная инженерия), которые и определили прогресс современной биотехнологии.

    Биотехнология - это мультидисциплина, в развитии которой большую роль играют молекулярная биология, включая молекулярную генетику, иммунология, различные области химии и ряд технических дисциплин. Основным содержанием биотехнологии является использование в промышленности биологических систем и процессов. Обычно для получения необходимых соединений используют микроорганизмы, культуры клеток, ткани растений и животных.

    На основе биотехнологии удалось создать десятки новых лекарственных средств. Так, получены инсулин человека; гормон роста; интерфероны; интерлейкин-2; факторы роста, регулирующие гемопоэз - эритропоэтин, филграстим, молграмостим; антикоагулянт лепирудин (ре- комбинантный вариант гирудина); фибринолитик урокиназа; тканевый активатор профибринолизина алтеплаза; противолейкемический препарат L-аспарагиназа и многие другие.

    Большой интерес представляют также моноклональные антитела, которые могут быть использованы при лечении опухолей (например, препарат этой группы трастузумаб эффективен при раке молочной железы, а ритуксимаб - при лимфогранулематозе). К группе моноклональных антител относится также антиагрегант абциксимаб. Кроме того, моноклональные антитела находят применение в качестве антидотов, в частности, при интоксикации дигоксином и другими сердечными гликозидами. Один из таких антидотов выпускается под названием Digoxin immune fab (Digibind).

    Совершенно очевидно, что роль и перспективы биотехнологии в отношении создания препаратов новых поколений очень велики.

    При фармакологическом исследовании потенциальных препаратов подробно изучается фармакодинамика веществ: их специфическая активность, длительность эффекта, механизм и локализация действия. Важным аспектом исследования является фармакокинетика веществ: всасывание, распределение и превращение в организме, а также пути выведения. Специальное внимание уделяется побочным эффектам, токсичности при однократном и длительном применении, тератогенности, канцерогенности, мутагенности. Необходимо сравнивать новые вещества с известными препаратами тех же групп. При фармакологической оценке соединений используют разнообразные физиологические, биохимические, биофизические, морфологические и другие методы исследования.

    Большое значение имеет изучение эффективности веществ при соответствующих патологических состояниях (экспериментальная фармакотерапия). Так, лечебное действие противомикробных веществ испытывают на животных, зараженных возбудителями определенных инфекций, противобластомные средства - на животных с экспериментальными и спонтанными опухолями. Кроме того, желательно располагать сведениями об особенностях действия веществ на фоне тех патологических состояний, при которых они могут быть использованы (например, при атеросклерозе, инфаркте миокарда, воспалении). Это направление, как уже отмечалось, получило название «патологической фармакологии». К сожалению, существующие экспериментальные модели редко полностью соответствуют тому, что наблюдается в клинике. Тем не менее они в какой-то мере имитируют условия, в которых назначают лекарственные средства, и тем самым приближают экспериментальную фармакологию к практической медицине.

    Результаты исследования веществ, перспективных в качестве лекарственных препаратов, передают в Фармакологический комитет МЗ РФ, в который входят эксперты разных специальностей (в основном фармакологи и клиницисты). Если Фармакологический комитет считает проведенные экспериментальные исследования исчерпывающими, предлагаемое соединение передают в клиники, имеющие необходимый опыт исследования лекарственных веществ. Это очень важный этап, так как решающее слово в оценке новых лекарственных средств принадлежит клиницистам. Большая роль в этих исследованиях отводится клини- ческим фармакологам, основной задачей которых являются клиническое изучение фармакокинетики и фармакодинамики лекарственных веществ, в том числе новых препаратов, и разработка на этой основе наиболее эффективных и безвредных методов их применения.

    При клиническом испытании новых лекарственных средств следует исходить из ряда принципов (табл. I.3). Прежде всего их необходимо исследовать на значительном контингенте больных. Во многих странах этому часто предшествует испытание на здоровых (добровольцах). Очень важно, чтобы каждое новое вещество сравнивалось с хорошо известными препаратами той же группы (например,

    Таблица I.3. Принципы клинического исследования новых лекарственных средств (их фар- макотерапевтической эффективности, побочных и токсических эффектов)

    опиоидные анальгетики - с морфином, сердечные гликозиды - со строфантином и гликозидами наперстянки). Новое лекарственное средство обязательно должно отличаться от имеющихся в лучшую сторону.

    При клиническом испытании веществ необходимо использовать объективные методы, позволяющие количественно оценить наблюдаемые эффекты. Комплексное исследование с использованием большого набора адекватных методик - еще одно из требований, предъявляемых к клиническим испытаниям фармакологических веществ.

    В случаях, когда в эффективности веществ существенную роль может играть элемент суггестии (внушения), используют плацебо 1 - лекарственные формы, которые по внешнему виду, запаху, вкусу и прочим свойствам имитируют принимаемый препарат, но не содержат лекарственного вещества (состоят лишь из индифферентных формообразующих веществ). При «слепом контроле» в неизвестной для больного последовательности чередуют лекарственное вещество и плацебо. Только лечащий врач знает, когда больной принимает плацебо. При «двойном слепом контроле» об этом информировано третье лицо (заведующий отделением или другой врач). Такой принцип исследования веществ позволяет особенно объективно оценить их действие, так как при ряде патологических состояний (например, при некоторых болях) плацебо может давать положительный эффект у значительной части больных.

    Достоверность данных, полученных разными методами, должна быть подтверждена статистически.

    Важным элементом клинического исследования новых препаратов является соблюдение этических принципов. Например, необходимо согласие пациентов на включение их в определенную программу изучения нового лекарственного средства. Нельзя проводить испытания на детях, беременных женщинах, пациентах с психическими заболеваниями. Применение плацебо исключено, если заболевание угрожает жизни. Однако решать эти вопросы не всегда просто, так как в интересах больных иногда приходится идти на определенный риск. Для решения этих задач существуют специальные этические комитеты, которые рас-

    1 От лат. placeo - понравлюсь.

    сматривают соответствующие аспекты при проведении испытаний новых лекарственных средств.

    В большинстве стран клиническое испытание новых лекарственных веществ обычно проходит 4 фазы.

    1-я фаза. Проводится на небольшой группе здоровых добровольцев. Устанавливаются оптимальные дозировки, которые вызывают желаемый эффект. Целесообразны также фармакокинетические исследования, касающиеся всасывания веществ, периода их «полужизни», метаболизма. Рекомендуется, чтобы такие ис- следования выполняли клинические фармакологи.

    2-я фаза. Проводится на небольшом количестве больных (обычно до 100-200) с заболеванием, для лечения которого предлагается данный препарат. Детально исследуются фармакодинамика (включая плацебо) и фармакокинетика веществ, регистрируются возникающие побочные эффекты. Эту фазу апробации рекомендуется проводить в специализированных клинических центрах.

    3-я фаза. Клиническое (рандомизированное 1 контролируемое) испытание на большом контингенте больных (до нескольких тысяч). Подробно изучаются эффективность (включая «двойной слепой контроль») и безопасность веществ. Специальное внимание обращают на побочные эффекты, в том числе аллергические реакции, и токсичность препарата. Проводится сопоставление с другими препаратами этой группы. Если результаты проведенного исследования положительные, материалы представляются в официальную организацию, которая дает разрешение на регистрацию и выпуск препарата для практического применения. В нашей стране это Фармакологический комитет МЗ РФ, решения которого утверждаются министром здравоохранения.

    Пути создания новых лекарственных средств І. Химический синтез препаратов направленный синтез; эмпирический путь. ІІ. Получение препаратов из лекарственного сырья и выделение индивидуальных веществ: животного происхождения; растительного происхождения; из минералов. ІІІ. Выделение лекарственных веществ, являющихся продуктами жизнедеятельности микроорганизмов и грибов. Биотехнология.

    Химический синтез препаратов направленный синтез Воспроизведение биогенных веществ Адреналин, норадреналин, γ-аминомасляная кислота, гормоны, простагландины и др. физиологически активные соединения. Создание антиметаболитов Синтез структурных аналогов естественных метаболитов, обладающих противоположным действием. Например, антибактериальные средства сульфаниламиды сходны по строению с парааминобен-зойной кислотой, необходимой для жизнедеятельности микроорганизмов, и являются ее антиметаболитами:

    Химический синтез препаратов направленный синтез Химическая модификация соединений с известной активностью Главная задача - создание новых препаратов, выгодно отличающихся от уже известных (более активных, менее токсичных). 1. На основе гидрокортизона, продуцируемого корой надпочечников, синтезированы многие значительно более активные глюкокортикоиды, в меньшей степени влияющие на водно-солевой обмен. 2. Известны сотни синтезированных сульфаниламидов, из которых лишь некоторые внедрены в медицинскую практику. Исследование рядов соединений направлены на выяснение зависимости между их строением, физико-химическими свойствами и биологической активностью. Установление таких закономерностей позволяет более целенаправленно проводить синтез новых препаратов. При этом выясняется, какие химические группировки и особенности структуры определяют основные эффекты действия веществ.

    Химическая модификация соединений с известной активностью: модификация веществ растительного происхождения Тубокурарин (стрельный яд кураре) и его синтетические аналоги Расслабляют скелетные мышцы. Значение имеет расстояние между двумя катионными центрами (N+ - N+).

    Химический синтез препаратов направленный синтез Изучение структуры субстрата, с которым взаимодействует лекарство За основу берется не биологически активное вещество, а субстрат, с которым оно взаимодействует: рецептор, фермент, нуклеиновая кислота. Реализация этого подхода базируется на данных о трехмерной структуре макромолекул, которые являются мишенями препарата. Современный подход, использующий компьютерное моделирование; рентгеноструктурный анализ; спектроскопию, основанную на ядерно-магнитном резонансе; статистические методы; генную инженерию.

    Химический синтез препаратов направленный синтез Синтез, основанный на изучении химических превращений вещества в организме. Пролекарства. 1. Комплексы «вещество носитель - активное вещество» Обеспечивают направленный транспорт к клеткам мишеням и избирательность действия. Активное вещество высвобождается в месте действия под влиянием ферментов. Функцию носителей могут выполнять белки, пептиды и другие молекулы. Носители могут облегчать прохождение биологических барьеров: Ампициллин плохо всасывается в кишечнике (~ 40 %). Пролекарство бакампициллин неактивно, но абсорбируется на 9899 %. В сыворотке под влиянием эстераз отщепляется активный ампициллин.

    Химический синтез препаратов направленный синтез Синтез, основанный на изучении химических превращений вещества в организме. Пролекарства. 2. Биопрекурсоры Представляют собой индивидуальные химические вещества, которые сами по себе неактивны. В организме из них образуются другие вещества – метаболиты, которые и проявляют биологическую активность: пронтозил - сульфаниламид L-ДОФА - дофамин

    Химический синтез препаратов направленный синтез Синтез, основанный на изучении химических превращений вещества в организме. Средства, влияющие на биотрансформацию. Базируется на знании ферментативных процессов, обеспечивающих метаболизм веществ, позволяет создавать препараты, которые изменяют активность ферментов. Ингибиторы ацетилхолинэстеразы (прозерин) усиливают и пролонгируют действие естественного медиатора ацетилхолина. Индукторы синтеза ферментов, участвующих в процессах детоксикации химических соединений (фенобарбитал).

    Химический синтез препаратов эмпирический путь Случайные находки. Снижение уровня сахара в крови, обнаруженное при использовании сульфаниламидов, привело к созданию их производных с выраженными гипогликемическими свойствами (бутамид). Они широко используются при сахарном диабете. Случайно было обнаружено действие тетурама (антабус), который используется в производстве резины. Применяется при лечении алкоголизма. Скрининг. Проверка химических соединений на все виды биологической активности. Трудоемкий и малоэффективный путь. Однако он неизбежен при изучении нового класса химических веществ, свойства которых трудно прогнозировать исходя из структуры.

    Препараты и индивидуальные вещества из лекарственного сырья Используются различные экстракты, настойки, более или менее очищенные препараты. Например, лауданум – настойка опия сырца.

    Препараты и индивидуальные вещества из лекарственного сырья Индивидуальные вещества: Дигоксин - сердечный гликозид из наперстянки Атропин - М-холиноблокатор из красавки (белладонны) Салициловая кислота - противовоспалительное вещество из ивы Колхицин - алкалоид безвременника, используется при лечении подагры.

    Этапы создания лекарственных средств Получение препарата Проверка на животных Природные источники Эффективность Селективность Механизмы действия Метаболизм Оценка безопасности ~ 2 года Лекарственная субстанция (действующее соединение) Химический синтез ~ 2 года Клинические испытания Фаза 1 безопасно ли лекарство? Фаза 2 эффективно ли лекарство? Фаза 3 эффективно ли лекарство при двойном слепом контроле? Метаболизм Оценка безопасности ~ 4 года Маркетинг В Н Е Д Р Е Н И Е Л Е К А Р С Т В А 1 год Фаза 4 постмаркетинговое наблюдение Появление Генетиков Через 17 лет после раз- решения к применению Окончание срока действия патента

    Разработка новых пре­паратов включает в себя ряд последовательных этапов.

    Первый этап направлен на поиск перспективных соединений , возможно, обла­дающих лечебным действием. Основные пути изложены выше.

    Второй этап - это доклиническое изучение биологической ак­тивности обозначенных к дальнейшему исследованию веществ. Доклиническое изучение вещества разделяется на: фармакологичес­кое и токсикологическое.

    Цель фармакологических исследований - определение не только терапевтической эффективности препарата и его влияния на системы организма, но и возможных побочных реакций, связанных с фармакологической активностью.

    При токсикологических исследованиях устанавливают характер и возможные повреждающие воздействия на организм эксперимен­тальных животных. Выделяют три этапа токсикологических иссле­дований: 1) изучение токсичности препарата при однократном вве­дении; 2) определение хронической токсичности вещества при повторном введении на протяжении 1 года и больше; 3) установле­ние специфического влияния соединения (онкогенность, мутаген­ность, воздействие на плод и др.).

    Третий этап - клинические испытания нового лекарственного вещества. Проводится оценка терапевтической или профилактической эффективности, переносимости , установление доз и схем примене­ния препарата, а также сравнительных характеристик с другими лекарственными средствами. В процессе клинических испытаний выделяют четыре фазы .

    В фазе I устанавливают переносимость и терапевтическое действие исследуемого препара­та на ограниченном числе больных (5-10 чел.), а также и на здо­ровых добровольцах.

    В фазу II клинические испытания проводят как на группе больных (100-200 чел.), так и на контрольной груп­пе. Для получения достоверных данных применяют «двойной сле­пой» метод , когда ни больной, ни врач, а только руководитель ис­пытания знает, какой используется препарат. Эффективность и переносимость нового фармакологического препарата сравнивают с таковыми плацебо или препаратом аналогичного действия.

    Целью фазы III испытаний является получение дополнительной информа­ции об исследуемом фармакологическом средстве. При этом иссле­дования ведутся на сотнях или даже на тысячах больных как в ста­ционарных, так и в амбулаторных условиях. После всесторонних клинических испытаний Фармакологичес­ким комитетом дается рекомендация к практическому применению.

    Фаза IV исследований изучает действие лекарственного средства на практике в разнообразных ситуациях, при этом особое внимание обращается на сбор и анализ данных о побочном действии иссле­дуемых лекарственных препаратов.

  • 1. Виды действия лекарственных веществ.
  • 2 .Противопаркинсонические лс.
  • Вопрос 1.
  • Противопоказания: повышенная чувствительность к компонентам препарата; язвенная болезнь желудка и двенадцатиперстной кишки; детский возраст (до 12 лет). Вопрос 2.
  • Применение вещества Допамин
  • Противопоказания
  • Применение вещества Натрия хлорид
  • Противопоказания
  • Побочные действия вещества Натрия хлорид
  • Вопрос 3.
  • Вопрос 1.
  • Вопрос 2.
  • Вопрос 3.
  • 3.Иммуномодуляторы, интерфероны, иммунные препараты.
  • Вопрос 1. Слабитаельные средства
  • Вопрос 2. Антигипертензивные препараты, влияющие на раас (Эналаприл, Каптоприл, Лозартан).
  • Вопрос 3. Этиловый спирт. Тетурам.
  • Вопрос 1. Вегетативная нервная система.
  • Вопрос 2 опиоидные лекарства
  • Вопрос 3. Антикоагулянты. Гепарин.
  • 1 Группа макролидов
  • I. Средства, влияющие преимущественно на сократительную активность мио­метрия
  • II. Средства, повышающие преимущественно тонус миометрия
  • III. Средства, понижающие тонус шейки матки
  • I. Средства, применяемые при лечении заболеваний, вызванных патогенными грибами
  • 1.Диуретики, оказывающие прямое влияние на функцию эпителия почечных канальцев
  • 2.Средства, действующие на толстый сегмент восходящей части петли Генле («петлевые» диуретики)
  • 3.Средства, действующие в основном на начальную часть дистальных почечных канальцев
  • 5.Средства, действующие на протяжении всех почечных канальцев (в прокси­мальных канальцах, нисходящей петле Генле, собирательных трубках)
  • 15.9. Средства, способствующие растворению желчных камней (холелитолитические средства)
  • 1. Стимуляция функции периферических желез - применение препаратов:
  • 2. Подавление функции периферических желез:
  • Вопрос 1. Вяжущие средства. Классификация. Понятие о вяжущем, раздражающем, прижигающем действии. Механизм действия, показания к применению. Адсорбирующие, обволакивающие, мягчительные средства.
  • 3. Полярные (водорастворимые-4-5 гидроксильных групп)
  • II. Сг с 6-членным лактоновым кольцом «бафадиенолиды»:
  • 3. Положительный батмотропный эффект - увеличение возбудимости! миокарда
  • 4. Отрицательный дромотропный эффект - прямое угнетающее влияние на проводимость в атриовентрикулярном узле - от синусового узла («водителя ритма») к рабочему миокарду.
  • Вопрос 3. Антисептические и дезинфицирующие средства. Требования, предъявляемые к антисептическим и дезинфицирующим средствам. Классификация, механизмы действия, практическое применение.
  • 1. Требования к антисептическим и дезинфицирующим средствам:
  • 3. Характеристики
  • 1. Абсолютная и относительная передозировка лекарственных препаратов. Причины, меры предупреждения и коррекции. Понятие о антидотах и комплексонах.
  • 2. Фенотиазиновые нейролептики. Сравн. Характеристика, показания, побочные действия.
  • 3. Антикоагулянты непрямого действия. Фармакокинетика и фармакодинамика. Принципы дозирования и контроля за терапией антикоагулянтами.
  • 1.Отравления, виды, помощь, примеры отравлений.
  • 2.Нейролептики
  • 3.Гемостатики, классификация, механизм, показания, побочка.
  • I. Ульцерогенное действие обусловлено 2-мя механизмами
  • 2)Рвотные средства рефлекторного и центрального действия. Механизм действия (сульфат меди, апоморфин). Противорвотные средства, механизм действия (метоклопрамид, ондасетрон). Показания к назначению.
  • 11 Нейроэндокринные эффекты. адг, пролактина, стг, ↓ гтг (фсг и лг) и актг
  • 2. На сердечно-сосудистую систему:
  • 1.Мягкие лекарственные формы. Сравнительная характеристика мягких лекарственных форм.
  • Вопрос1. Рецепт, его структура и содержание. Правила выписывания рецептов на лекарственные средства амбулаторным больным. Формы рецептурных бланков.
  • Вопрос3. Антипротозойные средства - метронидазол (трихопол), трихомонацид, мономицин, тетрациклины, солюсурьмин. Классификация, механизмы действия. Показания к назначению.
  • Вопрос1. Принципы изыскания новых лекарственных средств, пути внедрения их в медицинскую практику
  • 1. Жидкие лекарст венные формы. Настои,отвары,настойки,экстракты,эмульсии. Сравнительная характеристика,практическое применение.
  • 1. Жидкие лекарственные формы: настои, отвары, настойки, экстракты, эмульсии. Сравнительная характеристика, практическое применение.
  • 1) 1. Твердые лекарственные формы. Сравнительная оценка таблеток, драже, порошков, микрокапсулированных форм для лекарственной терапии. Имплантационные лекарственные формы.
  • 2) Адреномиметические средства непрямого типа действия (симпатомиметики). Эфедрин гидрохлорид, механизм действия, фармакологические эффекты, показания к применению. Побочное действие.
  • 3) Противоатеросклеротические средства, классификация. Статины, механизм действия, показания к назначению. Побочные эффекты.
  • Вопрос1. Принципы изыскания новых лекарственных средств, пути внедрения их в медицинскую практику

    Прогресс фармакологии характеризуется непрерывным поиском и созданием новых препаратов. Создание лекарств начинается с исследований химиков и фармакологов, творческое сотрудничество которых абсолютно необходимо при открытии новых препаратов. При этом поиск новых средств развивается по нескольким направлениям.

    Основным путем является ХИМИЧЕСКИЙ синтез препаратов, который может реализоваться в виде НАПРАВЛЕННОГО синтеза или иметь ЭМПИРИЧЕСКИЙ путь. Если направленный синтез связан с воспроизведением биогенных веществ (инсулин, адреналин, норадреналин), созданием антиметаболитов (ПАБК-сульфаниламиды), модификацией молекул соединений с известной биологической активностью (изменение структуры ацетилхолина - ганглиоблокатор гигроний) и т. д., то эмпирический путь состоит или из случайных находок, либо поиска путем скрининга, то есть просеивания различных химических соединений на фармакологическую активность.

    Одним из примеров эмпирических находок может быть приведен случай обранужения гипогликемического эффекта при использовании сульфаниламидов, что впоследствии привело к созданию сульфаниламидных синтетических перфоральных противодиабетических средств (бутамид, хлорпропамид).

    Весьма трудоемок и другой вариант эмпирического пути создания лекарств - МЕТОД СКРИНИНГА. Однако он неизбежен, особенно если исследуется новый класс химических соединений, свойства которых, исходя из их структуры, трудно прогнозировать (малоэффективный путь). И здесь огромную роль в настоящее время играет компьютеризация научного поиска.

    В настоящее время лекарственные средства получают главным образом посредством направленного химического синтеза, который может осуществляться а) путем подобия (введение дополнительных цепочек, радикалов) б) путем комплементарности, то есть соответствия каким-либо рецепторам тканей и органов.

    В арсенале лекарственных средств, помимо синтетических препаратов, значительное место занимают препараты и индивидуальные вещества из ЛЕКАРСТВЕННОГО СЫРЬЯ растительного или животного происхождения, а также из различных минералов. Это прежде всего галеновы, новогаленовы препараты, алкалоиды, гликозиды. Так из опия получают морфин, кодеин, папаверин, из рауфльфии змеевидной - резерпин, из наперстянки - сердечные гликозиды - дигитоксин, дигоксин; из ряда эндокринных желез крупного рогатого скота - гормоны, иммуноактивные препараты (инсулин, тиреоидин, тактивин и т. д.).

    Некоторые лекарственные средства являются продуктами жизнедеятельности грибов и микроорганизмов. Пример - антибиотики. Лекарственные вещества растительного, животного, микробного, грибкового происхождения часто служат основой для их синтеза, а также последующих химических превращений и получения полусинтетических и синтетических препаратов.

    Набирают темпы создания лекарственных средств путем использования методов генной инженерии (инсулин и т. п.).

    Новое лекарственное средство, пройдя через все эти "сита" (исследование фармактивности, фармакодинамики, фармакокинетики, изучение побочных эффектов, токсичности и т. д.) допускается на клинические испытания. Здесь используется метод "слепого контроля", эффект плацебо, метод двойного "слепого контроля", когда ни врач, ни больной не знает, когда это плацебо используется. Знает только специальная комиссия. Клинические испытания проводятся на людях, и во многих странах это осуществляется на добровольцах. Здесь, безусловно, возникает масса юридических, деонтологических, нравственных аспектов проблемы, которые требуют своей четкой разработки, регламентации и утверждения законов на данный счет.

    Некоторые открытия в области фармакологии и их внедрение в медицинскую практику:

    1865 г. – установлено влияние сердечных гликозидов на сердце

    1879 г. – открытие нитроглицерина

    1921 г. – открытие инсулина

    1939 г. – открытие пенициллина

    1942 г. – открытие первых противоопухолевых препаратов

    1952 г. – открытие психотропных средств

    1955 г. – оральные контрацептивы

    1958 г. – первые в-адреноблокаторы

    1987 г. – группа статинов (гиполипидемические средства)

    1992 г. – ингибиторы АПФ

    1994 г. – ингибиторы протонного насоса

    вопрос2. . Мышечные релаксанты периферического действия (курареподобные средства).Классификация, механизм действия,фармакодинамика.Препараты: пипекурония бромид (ардуан), суксаметония йодид (дитилин), атракурий (тракриум), тубокурарин.Показания и противопоказания к применению. Меры помощи при передозировке.

    Классификация:

    1) Антидеполяризующие ср-ва:

    Тубокурарина хлорид

    Панкурония бромид

    Пипекурония бромид

    2) Деполяризующие ср-ва:

    3) В-ва смешанного типа действия:

    Диоксоний

    1 .Антидеполяризующие препараты блокируют н-холинорецепторы и препятствуют деполяризующему действию ацетилхолина. Блокирующее действие на ионные каналы имеет второстепенное значение. Антидеполяризующие средства могут быть конкурентными и неконкурентными н-холиноблокаторами. Так, возможен истинный конкурентный антагонизм между курареподобным веществом (например, тубокурарином) и ацетилхолином по влиянию на н-холинорецепторы. Если на фоне нервно-мышечного блока, вызванного тубокурарином, в области н-холинорецепторов концевой пластинки значительно повысить концентрацию ацетилхолина, то это приведет к восстановлению нервно-мышечной передачи (конкурентно действующий ацетил-холин вытеснит связанный с холинорецепторами тубокурарин). Если при этом вновь повысить до определенных величин концентрацию тубокурарина, то снова наступит блокирующий эффект. Курареподобные средства, действующие по такому принципу, называют конкурентными. К препаратам конкурентного типа действия относятся также панкуроний (павулон), пипекуроний (ардуан). Кроме того, имеются препараты неконкурентного типа (например, престонал). В этом случае курареподобный препарат и ацетилхолин, по-видимому, реагируют с разными, но взаимосвязанными рецепторными субстратами концевой пластинки.

    2. Деполяризующие средства (например, дитилин) возбуждают н-холинорецепторы и вызывают стойкую деполяризацию постсинаптической мембраны. Вначале развитие деполяризации проявляется мышечными подергиваниями-фасцикуляциями (нервно-мышечная передача кратковременно облегчается). Через небольшой промежуток времени наступает миопаралитический эффект.

    3. Отдельные курареподобные средства обладают смешанным типом действия (может быть сочетание деполяризующих и антидеполяризующих свойств). К этой группе относится диоксоний (деполяризующе-неконкурентный препарат). Сначала он вызывает кратковременную деполяризацию, которая сменяется недеполяризующим блоком.

    По продолжительности миопаралитического действия курареподобные средства условно можно подразделить на три группы: короткого действия (5-10 мин)-дитилин, средней продолжительности (20-50 мин) - тубокурарин, пипекуроний, панкуроний.

    Большинство курареподобных средств обладает высокой избирательностью действия в отношении нервно-мышечных синапсов. Вместе с тем они могут влиять и на другие звенья рефлекторной дуги. Ряд антидеполяризующих веществ обладает умеренной ганглиоблокирующей активностью (особенно тубокурарин), одним из проявлений которой является снижение артериального давления, а также угнетающим влиянием на н-холинорецепторы синока-ротидной зоны и мозгового слоя надпочечника. Для некоторых веществ (панкуроний) отмечено выраженное м-холиноблокирующее (ваголитическое) действие в отношении сердца, что приводит к тахикардии.

    Тубокурарин и некоторые другие препараты могут стимулировать высвобождение гистамина, что сопровождается снижением артериального давления, повышением тонуса мышц бронхов.

    Деполяризующие курареподобные средства оказывают определенное влияние на электролитный баланс. В результате деполяризации постсинаптичес-кой мембраны ионы калия выходят из скелетных мышц и содержание их в экстрацеллюлярной жидкости и плазме крови увеличивается. Это может быть причиной аритмий сердца.

    Деполяризующие курареподобные вещества стимулируют аннулоспиральные окончания скелетных мышц. Это приводит к усилению афферентной импульсации в проприоцептивных волокнах и может вызывать угнетение моносинаптических рефлексов.

    Курареподобные препараты, являющиеся четвертичными аммониевыми соединениями, плохо всасываются в желудочно-кишечном тракте, поэтому вводят их парентерально, обычно внутривенно.

    Курареподобные препараты широко применяют в анестезиологии при проведении разнообразных хирургических вмешательств. Вызывая расслабление скелетных мышц, они значительно облегчают проведение многих операций на органах грудной и брюшной полостей, а также на верхних и нижних конечностях. Их применяют при интубации трахеи, бронхоскопии, вправлении вывихов и репозиции костных отломков. Кроме того, эти препараты иногда используют при лечении столбняка, при электросудорожной терапии.

    Побочные эффекты курареподобных средств не носят угрожающего характера. Артериальное давление может снижаться (тубокурарин) и повышаться (дитилин). Для ряда препаратов типична тахикардия. Иногда возникают аритмии сердца (дитилин), бронхоспазм (тубокурарин), повышение внутриглазного давления (дитилин). Для деполяризующих веществ характерны мышечные боли. У лиц с генетически обусловленной недостаточностью холин-эстеразы плазмы крови дитилин может вызывать длительное апноэ (до 6-8 ч и более вместо обычных 5-10 мин).

    Курареподобные средства следует применять с осторожностью при заболеваниях печени, почек, а также в старческом возрасте.

    Следует помнить, что курареподобные средства угнетают или полностью выключают дыхание. Поэтому они могут быть использованы в медицинской практике только при наличии антагонистов и всех необходимых условий для проведения искусственного дыхания.

    Вопрос3. Антиангинальные средства бета-адреноблокаторы, и блокаторы кальциевых каналов. Механизм антиангинального действия, фармакодинамика. Сравнительная характеристика – пропранолол (анаприлин), атенолол (тенормин), верапамил, (изоптин), нифедипин. Показания к назначению. Побочное действие.

    БЕТА-АДРЕНОБЛОКАТОРЫ

    Данная группа средств в последние годы нашла широкое распространение для лечения целого ряда терапевтических заболеваний.

    Различают неселективные бета-адреноблокаторы (тимолол, пропранолол, соталол, надолол, окспренолол, пиндолол и др.) и селективные бета-1-адреноблокаторы (метопролол, атенолол, ацебутолол и др.).

    Терапевтическая активность этой группы препаратов при стенокардии обусловлена их способностью блокировать влияние симпатической нервной системы на сердце, что приводит к снижению его работы и уменьшению потребления миокардом кислорода.

    АНАПРИЛИН (пропранолол, индерал, обзидан; таблетки по 0, 01 и 0, 04) - некардиоселективный бета-адреноблокатор без собственной симпатомиметической активности с непродолжительным действием. Анаприлин снижает все 4 функции сердца, прежде всего - сократимость миокарда. Максимально выраженный эффект наблюдается в течение 30-60 минут, терапевтический эффект, в связи с коротким периодом полувыведения (2, 5-3, 2 часа), длится 5-6 часов. Это означает что препарат следует принимать 4-5 раз в сутки. Анаприлин используют только для профилактики приступов стенокардии, исключительно при типичной ее форме, так как при вазоспастической форме стенокардии на фоне заблокированных бета-адренорецепторов, катехоламины будут усиливать спазм коронарных сосудов.

    Побочные эффекты: снижение сократимости миокарда, брадикардия, АВ-блокады, бронхоспазм; тошнота, рвота, диарея, общая слабость, головокружение, иногда - аллергические реакции. Возможны явления депрессии. При одновременном применении сахароснижающих средств - опасность гипогликемии.

    АНТАГОНИСТЫ КАЛЬЦИЯ (БЛОКАТОРЫ КАЛЬЦИЕВЫХ КАНАЛОВ)

    Значение кальция в выполнении организмом жизненно важных функций огромно. Кальций необходим для регуляции процессов возбуждения и торможения как в гладкой, так и в скелетной мускулатуре. Поступая из внешней среды или из внутриклеточного депо под действием различных стимулов, кальций взаимодействует с кальций-связывающими белками цитоплазмы, выполняющими роль регуляторов.

    Для сердца и сосудов значение кальция несколько различно, что связано с преобладанием (в сердце или сосудах) специфичных кальцийсвязывающих белков. В миокардиоцитах имеется особый белок - тропонин (лейотонин), а в гладких миоцитах сосудов - особый термостабильный кальций-зависимый белок кальмодулин. В зависимости от того, действуют ли они в большей степени на тропонин или кальмодулин, одни блокаторы кальциевых каналов в большей степени влияют на сердце, а другие - на сосуды. Например, такой антагонист кальция как ВЕРАПАМИЛ в большей степени действует на сердце (очень важным является его антиаритмическое действие).

    Антиангинальный эффект препаратов этой группы связан как с прямым их действием на миокард, так и, прежде всего, с влиянием на периферическую гемодинамику. Антагонисты кальция блокируют его поступление в гладкомышечную клетку, таким образом уменьшая ее способность к сокращению. Действие этих средств на коронарные сосуды характеризуется как антиспастическое, в результате коронарный кровоток увеличивается, а вследствие действия на периферические сосуды - снижается АД. Благодаря этому снижается постнагрузка на сердце, улучшается кровоток в зоне ишемии. Эти препараты уменьшают механическую работу сердца и потребность миокарда в кислороде, увеличивают количество коллатералей. При их использовании у больных уменьшается частота и интенсивность приступов стенокардии, повышается толерантность к физическим нагрузкам.

    Наиболее часто с этой целью применяют нифедипин (синонимы: фенигидин, коринфар, кордафен, кордипин и др.; таб. по 0, 01). Эффект наступает через 15-20 минут и продолжается 4-6 часов. Препарат уступает нитроглицерину по силе антиангинального эффекта.

    В отличие от верапамила препарат обладает слабой антиаритмической активностью, сильно снижает диастолическое давление. Особенно хорошо расслабляет коронарные сосуды при вазоспастической стенокардии. Вообще при этой форме стенокардии антагонисты кальция предпочтительнее. Кроме нифедипина для хронического лечения стенокардии используют созданные в 80-х годах производные нифедипина второго поколения: исрадипин (син.: ломир).

    Данная группа препаратов дает незначительное количество побочных эффектов: снижение АД, головные боли, мышечная слабость, тошнота, запоры. Непрерывный прием препаратов в течение 2-3 месяцев ведет к развитию толерантности.

    При стенокардии с брадикардией, используют производное эфедрина - ОКСИФЕДРИН (ильдамен, МИОФЕДРИН; таблетки по 0, 016). Препарат обладает частичной агонистической активностью по отношению к бета-1-рецепторам сердца, оказывает непосредственное коронарорасширяющее действие, повышает сократительную способность миокарда без избыточного увеличения потребности в кислороде. Другой подобный препарат НОНАХЛАЗИН, отечественного производства, выпускается в таблетках по 0, 03 - производное фенотиазина. Препарат обладает положительным инотропным эффектом и снижает тонус коронарных артерий.

    При лечении больных со стенокардией находит применение и такой препарат как дипиридамол (курантил)- производное пиримидина. Этот препарат действует на микроциркуляцию крови в мелких сосудах, препятствуя агрегации тромбоцитов, увеличивает число коллатералей и интенсивность коллатерального кровотока, однако, может вызвать симптом "обкрадывания", особенно при внутривенном введении у больных с выраженным коронарным атеросклерозом, так как препарат вызывает расширение тех сосудов, которые не поражены склерозом. С другой стороны, этот препарат показан больным, у которых есть стенокардия, а также вследствие различных причин повышена свертываемость крови.

    Средства типа валидола имеют рефлекторный тип действия. В состав этого препарата входит ментол (25% раствор ментола в ментоловом эфире изовалериановой кислоты). Является слабым антиангинальным средством, оказывает седативное действие и умеренный рефлекторный сосудорасширяющий эффект. Показан при легких формах стенокардии.

    Билет 10