Антигены. Антигены и антитела

Понятие об антигенах

Антигенами называются вещества или тела, несущие на себе отпечаток чужеродной генетической информации, те самые ве­щества, то «чужое», против которого «работает» иммунная сис­тема. Любые клетки (ткани, органы) не собственного организма (не свои) являются для иммунной системы комплексом анти­генов, даже некоторые собственные ткани (хрусталик глаза) - так называемые забарьерные ткани: в норме они не контакти­руют с внутренней средой организма.

Антигены обладают 2 свойствами:

  • антигенностью, или антигенным действием, - они способны индуцировать развитие иммунного ответа;
  • специфичностью, или антигенной функцией, - взаимодейство­вать с продуктами иммунного ответа, индуцированного анало­гичным антигеном.

Химическая природа антигенов различна. Это могут быть белки:

  • полипептиды;
  • нуклеопротеиды;
  • липопротеиды;
  • гликопротеиды;
  • полисахариды;
  • липиды высокой плотности;
  • нуклеиновые кислоты.

Классификация антигенов

Антигены делят на следующие:

  • сильные, которые вызывают выраженный иммунный ответ;
  • слабые, при введении которых интенсивность иммунного ответа невелика.

Сильные антигены, как правило, имеют белковую структуру.

Некоторые (обычно небелковые) антигены не способны инду­цировать развитие иммунного ответа (не обладают антигенно­стью), но могут вступать во взаимодействие с продуктами им­мунного ответа. Их называют неполноценными антигенами, или гаптенами. Многие простые вещества и лекарственные средст­ва являются гаптенами, при попадании в организм они могут конъюгировать с белками организма хозяина или другими но­сителями и приобретать свойства полноценных антигенов.

Для того чтобы какое-либо вещество проявляло свойства ан­тигена, кроме главного - чужеродное™, оно должно обладать еше иелым рядом признаков:

  • макромолекулярностью (молекулярная масса более 10 тыс. дальтон);
  • сложностью строения;
  • жесткостью структуры;
  • растворимостью;
  • способностью переходить в коллоидное состояние.

Молекула любого антигена состоит из 2 функиионально различ­ных частей:

  • 1-я часть - детерминантная группа, на долю которой прихо­дится 2-3% поверхности молекулы антигена. Она определяет чужеродность антигена, делая его именно этим антигеном, от­личающимся от других;
  • 2-я часть молекулы антигена называется проводниковой, при ее отделении от детерминантной группы она не проявляет анти­генного действия, но сохраняет способность реагировать с го­мологичными антителами, т. е. превращается в гаптен.

проводниковой частью связаны все остальные признаки ангенности, кроме чужеродноти.

Любой микроорганизм (бактерии, грибы, вирусы) представляет

собой комплекс антигенов.

По специфичности микробные антигены делятся:

  • на перекрестно-реагирующие (гетероантигены) - это антигены, общие с антигенами тканей и органов человека. Они имеются у многих микроорганизмов и рассматриваются как важный фактор вирулентности и пусковой механизм развития аутоим­мунных процессов;
  • группоспецифические - общие у микроорганизмов одного рода или семейства;
  • видоспецифические — общие у разных штаммов одного вида микроорганизмов;
  • вариантспецифические (типоспецифические) - встречаются у отдельных штаммов внутри вида микроорганизмов. По нали­чию тех или иных вариантспецифических антигенов микроор­ганизмы внутри вида делят на варианты по антигенному строе­нию - серовары.

По локализации антигены бактерий делятся:

  • на целлюлярные (связанные с клеткой);
  • экстрацеллюлярные (не связанные с клеткой). Основные иеллюлярные антигены:
  • соматический — О-антиген (глюцидо-липоидо-полипепдидный комплекс);
  • жгутиковый — Н-антиген (белок);
  • поверхностные - капсульные — К-антиген, fi-антиген, Vi-антиген.

Экстрацеллюлярные антигены - это продукты, секретируемые бактериями во внешнюю среду, в том числе антигены экзоток­синов, ферментов агрессии и защиты и др.

Антитела и их свойства

Антителами называются сывороточные белки, образующиеся в ответ на действие антигена. Они относятся к сывороточным глобулинам, поэтому называются иммуноглобулинами (Ig). Че­рез них реализуется гуморальный тип иммунного ответа. Антитела обладают 2 свойствами:

  • специфичностью, т. е. способностью вступать во взаимодейст­вие с антигеном, аналогичным тому, который индуцировал (вызвал) их образование;
  • гетерогенностью по физико-химическому строению, специфич­ности, генетической детерминированности образования (по происхождению).

Все иммуноглобулины являются иммунными, т. е. образуются в результате иммунизации, контакта с антигенами. Тем не менее по происхождению они делятся:

  • на нормальные (анамнестические) антитела, которые обнару­живаются в любом организме как результат бытовой иммуни­зации;
  • инфекционные антитела, которые накапливаются в организме в период инфекционной болезни;
  • постинфекционные антитела, которые обнаруживаются в организме после перенесенного инфекционного заболевания;
  • поствакцинальные антитела, которые возникают после искус­ственной иммунизации.

Антитела (иммуноглобулины) всегда специфичны антигену, индуцировавшему их образование. Тем не менее противомик-робные иммуноглобулины по специфичности делятся на те же группы, что и соответствующие микробные антигены:

  • группоспецифические;
  • видоспецифические;
  • вариантспецифические;
  • перекрестнореагирующие.

В настоящее время довольно часто методами биотехнологии и/или генной инженерии получают иммуноглобулины, продуци­руемые одним клоном кЛеток. Они называются моноклональными антителами. Их продуценты - клетки-гибридомы, являющиеся потомками, полученными при скрещивании В-лимфоцита (плазматической клетки) с опухолевой клеткой. От плазмати­ческой клетки-гибридома наследуется способность к синтезу антител, а от опухолевой клетки - способность длительно культивироваться вне организма.

Помимо специфичности одним из основных свойств иммуно­глобулинов является их гетерогенность, т. е. неоднородность популяции иммуноглобулинов по генетической детерминиро­ванности их образования и по физико-химическому строению.

Все ткани и клетки организма человека обладают антигенными свойствами. Одни антигены специфичны для всех млекопитающих, другие видоспецифичны для человека, третьи - для отдельных групп, их называют изоантигенами (например, антигены групп крови). К антигенам, свойственным только данному организму относятся антигены тканевой совместимости

Изоантигены
Изоантигены или групповые антигены - это антигены, по которым отдельные индивидуумы или группы особей одного вида различаются между собой.
В эритроцитах, лейкоцитах, тромбоцитах, а также в плазме крови людей открыто несколько десятков изоантигенов.
Изоантигены, генетически связаны, объединены в группы, получившие название: система АВО , резус и др. В основе деления людей на группы по системе АВО лежит наличие или отсутствие на эритроцитах антигенов, обозначенных А и В . В соответствии с этим все люди подразделены на 4 группы. Группа I (О) - антигены отсутствуют, группа II (А) - в эритроцитах содержится антиген А, группа III (В) - эритроциты обладают антигеном В, группа IV (АВ) - эритроциты обладают обоими антигенами. Поскольку в окружающей среде имеются микроорганизмы, обладающие такими же антигенами (их называют перекресно-реагирующими ), у человека имеются антитела к этим антигенам, но только к тем, которые у него отсутствуют. К собственным антигенам организм толерантен. При переливании крови или эритроцитов реципиенту, в крови которых содержатся антитела к соответствующему антигену, в сосудах происходит агглютинация перелитых несовместимых эритроцитов, что может вызвать шок и гибель реципиента.
У части людей эритроциты содержат еще особый антиген, получивший название резус-антигена (Rh) . По наличию или отсутствию Rh-антигена люди разделяются на две группы - резус (Rh)-положительных и резус (Rh)-отрицательных. При переливании крови Rh-отрицательному реципиенту, если эритроциты донора содержат Rh-антиген, может развиваться гемолитическая желтуха.


Рис. 3. Рецепторы, встроенные в мембрану эритроцита, являются антигенами организма (изоантигены) в том числе антигены А и В системы АВО и резус фактор.

Антигены главного комплекса тканевой (гисто) совместимости.
Помимо антигенов, свойственных всем людям и групповых антигенов, каждый организм обладает уникальным набором антигенов, свойственных только ему самому. Эти антигены кодируются группой генов, находящихся у человека на 6 хромосоме, и называются антигенами главного комплекса тканевой совместимости и обозначаются МНС-антигены (англ. Major histocompatibility complex ). МНС-антигены человека впервые были обнаружены на лейкоцитах и поэтому имеют другое название - HLA (Human leucocyte antigens). МНС-антигены относятся к гликопротеинам и содержатся на мембранах клеток организма, определяя его индивидуальные свойства и индуцируют трансплантационные реакции, за что они получили третье название - трансплантационные антигены . Кроме того, МНС-антигены играют обязательную роль в индукции иммунного ответа на любой антиген.
Белки I класса находятся на поверхности практически всех клеток организма. Антигены I класса обеспечивают представление антигенов цитотоксическим CD8+-лимфоцитам, а распознавание этого антигена антигенпредставляющим клеткам другого организма при трансплантации приводит к развитию трансплантационного иммунитета.
МНС-антигены II класса находятся преимущественно на антигенпредставляющих клетках - дендритных, макрофагах, В-лимфоцитах. Основная роль в иммуногенезе антигенов II класса - участие в представлении чужеродных антигенов Т-хелперным лимфоцитам.

Рис. 4. Антигены главного комплекса гистосовместимости I класса представляют антиген (темно-синий круг)Т-киллерам, антигены II класса представляют антиген Т-хелперам.

ФАКТОРЫ СПЕЦИФИЧЕСКОЙ ЗАЩИТЫ

Наряду с факторами неспецифической защиты среда организма защищена от проникающих в нее чужеродных макромолекул, в том числе от патогенных микробов, механизмами специфического иммунного ответа. Эти механизмы приобретаются организмом после контакта с конкретным чужеродным веществом, носящим название антиген. Действие этих механизмов строго избирательно и распространяется только на конкретный антиген, который индуцировал иммунный ответ. Реализация иммунного ответа является функцией высоко специализированной иммунной системы организма. Основные защитные функции иммунной системы - распознавание и элиминацию чужеродных макромолекул - осуществляют иммунокомпетентные клетки (лимфоциты), а также продуцируемые и секретируемые ими макромолекулы - антитела (иммуноглобулины).
Специфический иммунный ответ является одним из компонентов общей системы защиты организма, в которой все вышеперечисленные клетки и макромолекулы взаимосвязаны. Местом функциональной кооперации всех перечисленных клеток и макромолекул служат органы и ткани иммунной системы организма.

Лимфоциты

Лимфоциты - это единственные клетки организма, способные специфически распознавать и различать разные антигены и отвечать активацией на контакт с определенным антигеном.
Лимфоциты находятся в состоянии рециркуляции, т.е. постоянно происходит обмен клетками между кровью, лимфой и лимфоидными органами. Это необходимо для реализации специфического иммунного ответа, так как иммунная система должна быть готова ответить на любой из множества чужеродных антигенов, попадающих в любой участок тела. Поскольку каждый отдельный антиген распознается лишь очень небольшой частью популяции лимфоцитов, только постоянная рециркуляция может создать условия для встречи каждого антигена с единичными лимфоцитами, несущими специфические для него антиген-распознающие рецепторы .
Встретив и распознав этот антиген, лимфоциты размножаются (пролиферация) и дифференцируются , благодаря клональной селекции. Большая часть из них принимает непосредственное участие по уничтожению антигена, а меньшая часть остается в виде долгоживущих активированных клеток памяти и в данный момент участие в защите не принимает.
При весьма сходной морфологии малые лимфоциты делятся на две популяции, имеющие различные функции и продуцирующие разные белки. В зависимости от места созревания в организме подразделяются на Т -(тимус) иВ - (бурса Фабрициуса, костный мозг) лимфоциты .

Рис. 1. Клональная селекция лимфоцитов (схема). После антигенной стимуляции лимфоциты размножаются и дифференцируются. Большая часть из них активно участвуют в уничтожении антигена, а меньшая остается в виде долгоживущих клеток памяти.

В-лимфоциты
Каждая В-клетка генетически запрограммирована на синтез поверхностного рецептора иммуноглобулиновой природы(иммуноглобулиновые антигенраспознающие рецепторы ), специфичного к одному определенному антигену. Встретив и распознав этот антиген, В-клетки размножаются и дифференцируются в плазматические клетки , которые образуют и выделяют в растворимой форме большие количества таких рецепторных молекул, называемых антителами. Антитела представляют собой крупные гликопротеины и содержатся в крови и тканевой жидкости. Благодаря своей идентичности исходным рецепторным молекулам они взаимодействуют с тем антигеном, который первоначально активировал В-клетки.

Рис. 2. В-лимфоциты после антигенной стимуляции размножаются и дифференцируются в плазматические клетки (ПК), которые образуют и выделяют антитела.

Т-лимфоциты
Другая популяция получила название Т-лимфоциты в связи с их дифференцировкой в тимусе. Имеются несколько субпопуляций Т-клеток с различными функциями. Одни взаимодействуют с мононуклеарными фагоцитами, способствуя разрушению локализованных в них микроорганизмов. Другие взаимодействуют с В-клетками, помогая им размножаться, созревать и образовывать антитела. Обе эти субпопуляции Т-клеток названы хелперными Т-клетками (Тх ) и для них характерен поверхностный маркер CD4+ . Первые из них обозначаются как Тх1 (Th1)-клетки, они участвуют в реализации реакции гиперчувствительности замедленного типа (ГЗТ) и способны синтезировать ИЛ-2, ИФНg и лимфотоксин, а вторые обозначаются - Тх2 (Th2)-клетки и продуцируют ИЛ-4, ИЛ-5, ИЛ-6 и ИЛ-10. Таким образом Т-хелперы являются индукторами (активаторами) иммунных реакций.
Третья субпопуляция Т-клеток осуществляет разрушение клеток организма, зараженных вирусами или иными внутриклеточно размножающимися патогенными микробами. Этот тип активности Т-клеток назван цитотоксичностью, а сами клетки соответственно цитотоксическими Т-лимфоцитами (ТЦТЛ или ТCTL или Тц ) или Т-киллерами (Тк), они имеют маркер CD8+ .
Свои функции воздействия на другие клетки Т-лимфоциты осуществляют путем выделения растворимых белков - цитокинов , которые передают сигналы другим клеткам, или путем прямых межклеточных контактов. В цитотоксической реакции атакующая клетка направляет содержимое своих гранул наружу, к клетке-мишени. Гранулы цитотоксических Т-клеток содержат соединения, называемые перфоринами , которые способны создавать каналы в наружной мембране клеток-мишеней. (Подобно этому, антитела, связавшись с поверхностью клетки-мишени, могут привлечь комплемент для перфорирования ее цитоплазматической мембраны). Кроме того гранулы содержат лимфотоксины , которыми цитотоксические лимфоциты, путем введения через проделанное отверстие в мембране, лизируют клетку-мишень. Некоторые цитотоксические клетки способны также своим сигналом включать программу саморазрушения клетки-мишени - процесс апоптоза .
Как правило, распознавание антигена Т-клетками происходит только при том условии, что он презентирован на поверхности других клеток в ассоциации (комплексе) с молекулами МНС. В распознавании участвует специфичный к антигену Т-клеточный рецептор (ТкР или TCR ) , функционально и структурно сходный с той поверхностью молекулы иммуноглобулина, которая у В-клеток служит антигенсвязывающим рецептором. При этом Т-хелперы распознают антиген в ассоциации с МНС II класса, Т- киллеры - с МНС I класса.

Наиболее полное и точное определение, что такое антиген, дает академик Р. В. Петров: «Антигены - это все те же вещества, которые несут признаки генетически чужеродной информации и при введении в организм вызывают развитие специфических иммунологических реакций».

Таким образом, антигены индуцируют образование антител и эффекторов клеточного иммунитета и вступают с ними в реакцию.

Хорошими антигенами являются белки, но антигенность присуща многим сложным полисахаридам, липополисахаридам, полипептидам, а также некоторым искусственным высокомолекулярным соединениям. Простые элементы - железо, медь, хлорид натрия, глюкоза и другие не обладают антигенными свойствами. Специфического отпечатка работы разных генов на этих молекулах нет. Эта специфичность проявляется на более высоком уровне организации биологических макромолекул. Так, аминокислоты, соединенные в полипептидную цепь достаточной величины и сложности, приобретают антигенность.

Существуют еще гаптены , или неполные антигены , - это вещества, которые не вызывают образование антител в организме, но способны вступать в реакцию с имеющимися антителами. Гаптенами могут быть простые химические вещества. Но если соединить гаптен с носителем (белком или другим высокомолекулярным веществом), то он может стимулировать образование антител.

Считают, что большинство естественных антигенов состоит из двух частей: высокомолекулярной (чаще белковой), определяющей функцию антигена, и небелковой, придающей антигену специфичность - фактор специфичности, детерминанты, эпитопы.

Основными характеристиками активности антигенов являются антигенность, специфичность и иммуногенность.

Иммуногенность - способность антигена вызывать иммунный ответ и созданать иммунитет, обеспечивающий защиту организма от проникновения и развита возбудителя, имеющего в составе аналогичные антигены.

В серологических реакциях главную роль играют антигенность и специфичность.

Антигенность - способность антигена вызывать образование антител. Различают сильные и слабые антигены. Существует несколько объяснений антигенной активности, но не одно из них не является исчерпывающим.

Однако установлено, что антигенность определяется:

величиной молекулы антигена (молекулярная масса должна быть не менее 10 000 Д); химической чужеродностью; жесткостью структуры детерминанты антигена; сложностью структуры молекулы антигена.

Специфичность - свойство антигена вступать во взаимодействие только со специфическими (гомологичными) антителами. Эту специфическую связь обеспечивают детерминанты антигена.

Антигенная детерминанта - небольшой участок молекулы антигена, образующий пространственную конфигурацию за счет остатков молекул аминокислот, углеводов или липидов, которая и является фактическим местом присоединения молекулы антител.

Детерминанты часто сравнивают с валентностью. Антигены в основном имеют несколько детерминант, т. е. они многовалентны. Поэтому даже небольшая молекула антигена может присоединить несколько молекул антител.

Соединение антигена с антителами обеспечивается ионными, водородными, ван-дер-вальсовыми и гидрофобными связями.

Поскольку большинство белков являются хорошими антигенами, следовательно, и вирусные белки также обладают антигенными свойствами. Вирусы содержат белки, отличающиеся друг от друга физико-химическими и антигенными свойствами. Так, у вируса гриппа наиболее хорошо изучены три антигена: S-антиген (растворимый), по которому в РСК определяют тип вируса гриппа (А, В, С); суперкапсидная оболочка вируса гриппа (V-антиген) содержит два важных вирусных антигена - гемагглютинин (Н) и нейраминидазу (N), обусловливающие штаммоспецифические особенности вируса в реакции торможения гемагглютинирующей и реакции торможения нейраминидазной активности. В естественных условиях у вируса гриппа периодически антигены Н и N изменяются. Так, среди людей наблюдали циркуляцию вируса гриппа с антигенной структурой H0N1 (1934 г.), H1N1 (1947 г.), H2N2 (1957 г.), H3N2 (1968 г.).

На вирусные антигены в организме вырабатываются антитела.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

По отношению к организму антигены могут быть как внешнего, так и внутреннего происхождения. Хотя все антигены могут связываться с антителами, не все они могут вызвать массовую выработку этих антител организмом, то есть иммунный ответ . Антиген, способный вызывать иммунный ответ организма, называют иммуногеном .

Антигены, как правило, являются белками или полисахаридами и представляют собой части бактериальных клеток, вирусов и других микроорганизмов. Липиды и нуклеиновые кислоты , как правило, проявляют иммуногенные свойства только в комплексе с белками. Простые вещества, даже металлы, также могут вызывать выработку специфичных антител, если они находятся в комплексе c белком-носителем. Такие вещества называют гаптенами .

К антигенам немикробного происхождения относятся пыльца , яичный белок и белки трансплантатов тканей и органов , а также поверхностные белки клеток крови при гемотрансфузии.

Аллергены - это антигены, вызывающие аллергические реакции .

Энциклопедичный YouTube

    1 / 5

    ✪ Профессиональные антиген-представляющие клетки и ГКГ II

    ✪ Болезнь Бехтерева - hla b27 антиген и вероятность наследования анкилозирующего спондилита

    ✪ Что такое ИФА? Имуноферментный анализ. Антиген - антитело

    ✪ Что такое группа крови

    ✪ 55 лет без мяса. Почему? Доктор гематолог. Микробиолог.1930 года рождения.

    Субтитры

    Мы уже обсуждали неспецифические защитные механизмы, и узнали, что если у нас имеется определенный тип патогенов - например, бактерия - наши фагоциты способны распознавать белки на ее поверхности, или, если это другой вид патогенов - то, соответствующий маркер этого патогена. Они не знают тип патогена, но фагоцитам этого достаточно. Они его поглощают. Поэтому они и называются фагоцитами. Каким-то образом рецептор соприкасается с белком на поверхности, в данном случае, поверхности бактерии, сообщает, что происходит что-то нехорошее, и съедает его. Мембрана просто окружает патоген - и тот целиком оказывается внутри. Потом он сдавливается, и в результате оказывается окруженным мембраной и поглощается - то есть фагоцит его фагоцитирует. А в результате - мы видели это в первом ролике, когда я рассказывал про фагоциты - мембрана фагоцита полностью окружает патоген. Фагоцит сдавливает и окружает его, и в результате он попадает внутрь. Он окружен специальной мембраной. Эта мембрана носит название фагосома. Существуют различные типы фагоцитов - макрофаги, нейтрофилы или дендритные клетки. Суть в том, что роль макрофага на этом не заканчивается - они не просто съедают патогенов. Хотя это уже достаточно много само по себе. Он уничтожает бактерий на своем пути. Если это вирус, то он уничтожает и вирус. Но это еще не все. Он лизирует патоген - нарушает его целостность. Просто разрушает его. Различными путями он в итоге перерабатывает патоген. Давайте я это нарисую. Один момент... В первом видоролике о фагоцитах, мы видели, что у него есть лизосомы, которые связываются с патогеном, уничтожают любые виды фрагментов, разрушают и расчленяют бактерию на отдельные молекулы. Они разрушают содержимое патогена. И в результате остается набор фрагментов, полипептидные цепи - а мы помним что пептиды представляют собой цепи аминокислот. Полипетиды - это короткие цепи. Итак, короткие цепи аминокислот связываются со специальными белками. Это и есть основная тема видеоролика. Итак, они связываются с этими специальными белками. И затем эти белки транспортируются через мембрану клетки, где они представляются вместе с фрагментом патогена. Итак, конечный продукт фагоцитоза представляет собой следующее: фагоцит будет выглядеть вот так, и будет содержать антиген-представляющие белки, антиген-представляющие белки, которые связываются с участками оригинального патогена. Запишу это вот здесь. Здесь на них располагается небольшой фрагмент исходного патогена, который я обозначил зеленым цветом. А эти белки называются - это довольно сложное слово, они называются главным комплексом гистосовместимости, главным комплексом гистосовместимости, или сокращенно ГКГ. Главный комплекс гистосовместимости. И когда мы говорим о фагоцитах, макрофагах, дендритных клетках, которые являются частными случаями фагоцитов, их главные комплексы гистосовместимости, которые появляются после того, как они проглотили молекулу, относятся к ГКГ II класса. Белок ГКГ II класса. Может показаться, что я вдаюсь в ненужные подробности строения этих белков, однако вы скоро увидите, что это ключевой момент для активации других частей иммунной системы, в особенности, клеточного иммунитета. Все это невозможно без макрофагов или дендритных клеток. Они поглощают, пережевывают, и затем пережеванные фрагменты патогена прикрепляются к этим белкам ГКГ II типа, и направляются на поверхность клетки. Примерно то же самое, очень похожие события происходят и с B-клетками. Итак, если у нас имеются B-клетки - вот это подходящий цвет, будет синим. Но мы помним, что В происходит от бурсы, однако я предпочитаю версию с костным мозгом. Давайте представим, что у нас имеются B-клетки и они содержат мембранно-связанные антитела. Это специальное свойство B-клеток. Итак, все эти антитела: все 10 000 штук на поверхности экпрессируются с тем же вариабельным фрагментом. Вот такая B-клетка. Вы помните, что изначально она была неспецифической. Когда мы вели речь о фагоцитозе, эти клетки просто говорили: ты бактерия. А ты - вирус. Не знаю, кто ты конкретно. Просто съем тебя. Выглядишь подозрительно. И поэтому я тебя съем. Не знаю, кто ты конкретно и видел ли я тебя прежде. Когда мы говорим о B-клетках, мы подразумеваем адаптивную или специфическую иммунную систему. Вариабельные фрагменты мембранно-связанных антител являются специфическими к фрагментам определенных патогенов, то есть к определенным эпитопам. Эпитопы - это компоненты патогенов, которые эти специфические цепи могут распознать и связаться с ними. Мы имеем дело с вирусом в данной ситуации. Вирус просто связывается с этой B-клеткой. Помните, что существует огромное количество B-клеток вокруг, но вариабельные фрагменты всех этих B-клеток отличаются. Выделю их другим цветом. Итак, вариабельные фрагменты всех этих В-клеток отличаются. И этот момент кажется мне просто удивительным, ведь все они происходят от одной генетической линии, но их гены перемешиваются в процессе развития, и производят миллиарды комбинаций белков, или вариабельных концов этих антител. Давайте возьмем еще один патоген. Пусть это будет бактерия. В прошлом примере был вирус. Скажем, что это бактерия нового вида, и определенный участок на ее поверхности может связываться с единственной B-клеткой - обладающей нужной комбинацией генов. Какой-то участок поверхности связывается с этой B-клеткой вот так. Мы помним, что этот участок называется эпитопом. Это участок патогена, который связывается с нашим вариабельным участком. Он не будет связываться с другими клетками, поскольку у них другие последовательности. Он связывается с этой B-клеткой и начинается процесс активации. Иногда все это сразу приводит к активации B-клетки, но обычно требуется вмешательство Т-хелперов - и мы поговорим об этом подробнее. Нужно отметить, что когда запускается процесс активации, патоген поглощается. Я не упоминал об этом в предыдущем ролике, поскольку не хотел слишком углубляться в детали. Итак, вся бактерия целиком поглощается. Бактерия поглощается. И затем, когда она активизировалась, запускается ее пролиферация, обычно на этом этапе необходимо участие Т-клеток, и в результате часть их становится плазматическими B-клетками, и часть - B-клетками памяти. Вот это клетки памяти, это - плазматические. Плазматические B-клетки активизировались и готовы производить эти антитела в огромном количестве. И начинают производить антитела, выделять их в окружающую среду, чтобы те могли прикрепляться к еще большему числу патогенов, и вредить им разными способами: метить их, чтобы другие макрофаги или фагоциты могли их съесть, или соединять их попарно, чтобы они не могли адекватно функционировать. Любой вариант пригодится. Я не буду на этом останавливаться. Вот что происходит после активации. Интересно то, что B-клетка тоже выполняет функцию фагоцитов. Она может поглотить этот патоген. Она присоединяется к нему с помощью антител и разрушает его, присоединяется к нему с помощью антител и разрушает, берет частицы патогена, присоединяет их к белкам ГКГ II и выставляет их на своей поверхности. Итак, B-клетка также может представлять антиген. Антиген. Это также ГКГ II - главный комплекс гистосовместимости. Вы уже знаете, что «гисто-» означает «ткань». Сразу ясно, что это как-то связано с тканями нашего организма, и мы еще поговорим об этом, а также о том, как это связано с трансплантацией органов. Итак, это у нас ГКГ класса II. Когда мы говорим о B-клетках, мы знаем, что в этом случае распознают очень специфический патоген - это может быть вирус, белок или бактерия. Фагоциты же просто говорят: "Ты выглядишь подозрительно. Лучше я тебя съем. Я не знаю, к какому типу бактерии, вируса или белка ты относишься, неважно". Оба типа клеток поглощают патоген, берут его фрагменты, отрезают их и представляют их на своей поверхности в составе главного комплекса гистосовместимости. Эти клетки называются профессиональными антиген-представляющими клетками. Профессиональные. Именно это является их основным видом деятельности, хотя они выполняют и другие функции. Фагоциты занимаются поеданием. B-клетки производят антитела или становятся клетками памяти, благодаря чему могут активизироваться для производства антител. Но называются они профессиональными антиген-представляющими клетками. И этот антиген представляет собой небольшой фрагмент того, что вы хотите отследить, небольшой фрагмент настоящего патогена, вот что такое антиген - и эта клетка представляет данный антиген. Клетка эта называется профессиональной, поскольку она захватывает патогены в жидкостях нашего организма, и затем поглощает их, разрушает, а после чего представляет. Но, кроме того, существуют и непрофессиональные антиген-представляющие клетки. Они составляют большинство клеток. Даже эти клетки. Я хотел бы отложить эту тему для следующего видеоролика. Мои видеоролики становятся все длиннее. И вы можете подумать: хорошо, эти клетки в любом случае поглощают их, переваривают, представляют, но для чего это нужно? Вы видите, что эти ГКГ II, распознаются Т-хелперами. И все они участвуют в работе нашей иммунной системы. И в следующем видеоролике я расскажу о ГКГ I представляющих клетках, которыми являются практически все клетки организма.

Классификация

В зависимости от происхождения, антигены классифицируют на экзо генные, эндо генные и ауто антигены.

Экзогенные антигены

Экзогенные антигены попадают в организм из окружающей среды, путём вдыхания, проглатывания или инъекции. Такие антигены попадают в антиген-представляющие клетки путём эндоцитоза или фагоцитоза и затем процессируются на фрагменты. Антиген-представляющие клетки затем на своей поверхности презентируют фрагменты Т-хелперам (CD4 +) через молекулы главного комплекса гистосовместимости второго типа (MHC II).

Эндогенные антигены

Эндогенные антигены образуются клетками организма в ходе естественного метаболизма или в результате вирусной или внутриклеточной бактериальной инфекции. Фрагменты далее презентируются на поверхности клетки в комплексе с белками главного комплекса гистосовместимости первого типа MHC I . В случае, если презентированные антигены распознаются цитотоксическими лимфоцитами (CTL, CD8 +), Т-клетки секретируют различные токсины , которые вызывают апоптоз или лизис инфицированной клетки. Для того, чтобы цитотоксические лимфоциты не убивали здоровые клетки, аутореактивные Т-лимфоциты исключаются из репертуара в ходе отбора по толерантности .

Аутоантигены

Аутоантигены - это как правило нормальные белки или белковые комплексы (а также комплексы белков с ДНК или РНК), которые распознаются иммунной системой у пациентов с аутоиммунными заболеваниями . Такие антигены в норме не должны узнаваться иммунной системой, но, ввиду генетических факторов или условий окружающей среды, иммунологическая толерантность к таким антигенам у таких пациентов может быть утеряна.

Т-зависимые и Т-независимые антигены

По способности вызывать продукцию антител В-клетками без дополнительной стимуляции со стороны Т-клеток, антигены делят на Т-зависимые и Т-независимые . Т-зависимые антигены не способны сами вызывать продукцию антител без помощи со стороны Т-клеток. Эти антигены не содержат большого количества повторяющихся эпитопов, к ним относятся белки. После того как В-клетка узнаёт Т-зависимый антиген с помощью уникального B-клеточного рецептора , она перемещается в герминативный центр лимфоидного фолликула . Здесь при участии Т-лимфоцитов происходит активная пролиферация активированной клетки, соматический гипермутагенез её генов, кодирующих вариабельные участки иммуноглобулинов, и последующая селекция .

Т-независимые антигены могут активировать В-клетки без помощи Т-клеток. Антигены этого типа характеризуются многократным повторением антигенной детерминанты в их структуре, к ним относятся полисахариды. По способности Т-независимых антигенов активировать В-клетки, специфичные к другим антигенам (поликлональная активация), их делят на I (вызывают поликлональную активацию) и II тип (не вызывают поликлональную активацию). В-клетки, активированные Т-независимыми антигенами, перемещаются в краевые зоны лимфоидных фолликулов, где они пролиферируют без участия Т-клеток. Также они могут подвергаться соматическому мутагенезу, но, в отличие от Т-зависимой активации, это не обязательно на поверхности опухолевых клеток. Такие антигены могут быть презентированы опухолевыми клетками, и никогда - нормальными клетками. В таком случае они называются опухоль-специфичными антигенами (tumor-specific antigen, TSA) и, в общем случае, являются следствием опухоль-специфичной мутации. Более распространенными являются антигены, которые презентируются и на поверхности здоровых, и на поверхности опухолевых клеток, их называют опухоль-ассоциированными антигенами (tumor-associated antigen, TAA). Цитотоксические Т-лимфоциты , которые распознают такие антигены, могут уничтожить такие клетки до того, как они начнут пролиферировать или метастазировать.

Нативные антигены

Нативный антиген это антиген, который не был еще процессирован антигенпредставляющей клеткой на малые части. Т-лимфоциты не могут связываться с нативными антигенами и поэтому требуют процессинг АПК, в то время как В-лимфоциты могут быть активированы непроцессированными антигенами.

1.1. ПОНЯТИЯ ИНФЕКЦИИ И ИНФЕКЦИОННОЙ БОЛЕЗНИ

Инфекция – сумма биологических реакций, которыми макроорганизм отвечает на внедрение микробного (инфекционного) агента, вызывающего нарушение постоянства внутренней среды (гомеостаза).

Аналогичные процессы, вызванные простейшими, называются инвазиями.

Сложный процесс взаимодействия между микроорганизмами и их продуктами, с одной стороны, клетками, тканями и органами человека и животных – с другой, характеризуется чрезвычайно широким разнообразием своего проявления. Патогенетические и клинические проявления этого взаимодействия между микроорганизмами и макроорганизмом обозначаются термином инфекционная болезнь (заболевание).

Другими словами, понятия «инфекционная болезнь» и «инфекция» абсолютно не равнозначны, заболевание – это только одно из проявлений инфекции. Хотя даже в специальной литературе в настоящее время термин «инфекция» достаточно широко употребляется для обозначения соответствующих инфекционных болезней. Например, в выражениях «кишечные инфекции», «воздушно–капельные инфекции. Инфекционные болезни по–прежнему наносят огромный ущерб различным биологическим видам.

За последние годы зарегистрировано 38 новых инфекций – так называемых эмерджентных болезней, в том числе ВИЧ, геморрагические лихорадки, «болезнь легионеров», вирусные гепатиты, прионные болезни; причем в 40% случаев это нозологические формы, ранее считавшиеся неинфекционными.

Особенности инфекционных болезней состоят в следующем:

  1. их этиологическим фактором является микробный агент;
  2. они передаются от больного к здоровому;
  3. оставляют после себя ту или иную степень невосприимчивости;
  4. характеризуются цикличностью течения;
  5. имеют ряд общих синдромов.

1.2. КЛИНИЧЕСКИЕ СТАДИИ ИНФЕКЦИОННОГО ЗАБОЛЕВАНИЯ

В соответствии с этими особенностями любое инфекционное заболевание имеет определенные клинические стадии (периоды) своего течения, выраженные в той или иной степени:

  • инкубационный период – период от момента проникновения инфекционного агента в организм человека до появления первых предвестников заболевания. Возбудитель в этот период обычно не выделяется в окружающую среду, и больной не представляет эпидемиологической опасности для окружающих;
  • продромальный период – проявление первых неспецифических симптомов заболевания, характерных для общей интоксикации макроорганизма продуктами жизнедеятельности микроорганизмов и возможным действием бактериальных эндотоксинов, освобождающихся при гибели возбудителя; они также не выделяются в окружающую среду;

    Период разгара заболевания – проявление специфических симптомов заболевания. При наличии в этом периоде развития заболевания характерного симптомокомплекса клиницисты называют такое проявление заболевания манифестной инфекцией, а в тех случаях, когда заболевание в этот период протекает без выраженных симптомов, – бессимптомной инфекцией. Этот период развития инфекционного заболевания, как правило, сопровождается выделением возбудителя из организма, вследствие чего больной представляет эпидемиологическую опасность для окружающих; данные состояния характеризуются периодом исходов. В этот период возможны:

  • рецидив заболевания – возврат клинических проявлений болезни без повторного заражения за счет оставшихся в организме возбудителей;
  • суперинфекция – инфицирование макроорганизма тем же возбудителем до выздоровления. Если это происходит после выздоровления, то будет называться реинфекцией, так как возникает в результате нового заражения тем же возбудителем (как это часто бывает при гриппе, дизентерии, гонорее);
  • бактерионосительство, или, вернее, микробоносительство, – носительство возбудителя какого–либо инфекционного заболевания без клинических проявлений;
  • полное выздоровление (реконвалесценция) – в этот период возбудители также выделяются из организма человека в больших количествах, причем пути выделения зависят от локализации инфекционного процесса. Например, при респираторной инфекции – из носоглотки и ротовой полости со слюной и слизью; при кишечных инфекциях – с фекалиями и мочой, при гнойно–воспалительных заболеваниях – с гноем;
  • летальный исход. При этом необходимо помнить, что трупы инфекционных больных подлежат обязательной дезинфекции, так как представляют собой определенную эпидемиологическую опасность из–за высокого содержания в них микробного агента.

В учении об инфекции существует также понятие персистентности (инфицированности): микроорганизмы попадают в организм животного и могут существовать в нем, не проявляя себя достаточно долгое время.

Это происходит очень часто с возбудителем туберкулеза.

Отличие бактерионосительства от персистениии:

  • при носительстве животное выделяет возбудителя в окружающую среду и является опасным для окружающих;
  • при персистенции инфицированные животные в окружающую среду микроорганизм не выделяет, следовательно, не опасны для окружающих в эпидемиологическом отношении.

Кроме перечисленных терминов, существует еще понятие «инфекционный процесс» – это ответная реакция организма на проникновение и циркуляцию в нем микробного агента.

Из определения понятия «инфекция» становятся очевидными и факторы, необходимые для ее возникновения и развития:

– микроорганизм–возбудитель;

– восприимчивый макроорганизм;

– внешняя среда, в которой они взаимодействуют.

1.3. СВОЙСТВА АНТИГЕНОВ

Иммунный ответ – это сложная многокомпонентная, кооперативная реакция иммунной системы организма, индуцированная антигеном и направленная на его элиминацию. Явление иммунного ответа лежит в основе иммунитета.

Иммунный ответ зависит от:

  1. антигена – свойства, состав, молекулярная масса, доза, кратность попадания, длительность контакта);
  2. состояния организма (иммунологическая реактивность);
  3. условий внешней среды.

Антигены

Первоначально термин антиген (от англ. Antibodi generator) применяли для обозначения любой молекулы, индуцирующей образование В–клетками специфических антител. Однако теперь этот термин имеет более широкий смысл, обозначая любую молекулу, которую могут специфически распознавать элементы системы приобретенного иммунитета, т.е. В–клетки или Т–клетки, либо и те и другие.

Антиген – это инициатор и движущая сила всех реакций приобретенного иммунитета. Иммунная система возникла для распознавания и разрушения чужеродных агентов, а также устранения источника их образования – бактерий, инфицированных вирусом клеток и т.п. Когда антиген элиминирован, иммунный ответ прекращается.

Антигены – вещества различного происхождения, несущие признаки генетической чужеродности и вызывающие развитие иммунных реакций (гуморальных, клеточных, состояние иммунной толерантности, индуцирование иммунной памяти).

Свойства антигена определяются комплексом признаков: иммуногенность, антигенность, специфичность.

Иммуногенность – способность антигена индуцировать в организме иммунный ответ.

Антигенность – способность антигена взаимодействовать только с гомологичными антителами и лимфоцитами определенного клона.

Специфичность – структурные особенности, отличающие один антиген от другого.

Способность вызывать развитие иммунного ответа и определять его специфичность обладает фрагмент молекулы антигена – антигенная детерминанта (эпитоп), избирательно реагирующая с антигенраспознающими рецепторами и антителами. Молекула антигена может иметь несколько эпитопов, то есть быть поливалентной. Чем сложнее молекула антигена и чем больше у нее эпитопов, тем больше вероятность развития иммунной ответа.

Иммуногены или полные антигены – это вещества, вызывающие полноценный иммунный ответ и обладающие свойствами: иммуногенностью, антигенностью и специфичностью. Иммуногенами являются биополимеры – белки, их комплексы с углеводами (гликопротеиды), а также сложные полисахариды, липополисахариды с высокой молекулярной массой. Чем дальше от человека в эволюционном отношении отстоят организмы, тем большую иммуногенность проявляют их белки.

Гаптены – неполные антигены, относительно простые вещества, способные участвовать в иммунологических взаимодействиях, но не способные самостоятельно индуцировать иммунный ответ. Гаптены обладают свойствами антигенностью и специфичностью, но не обладают иммуногенностью.

Гаптены после присоединения к крупным, обычно белковым молекулам (носителям), могут приобретать свойства полного антигена.

Толерогены – антигены, способные подавлять иммунные реакции с развитием специфической неспособности отвечать на них.

Антигены – химические вещества, свободные, либо входящие в состав клеток, способные индуцировать иммунный ответ организма.

Полноценный антиген состоит из двух частей:

  • носитель (стабилизирующая часть) – 97 – 99% молекулы антигена; это, как правило, макромолекулы, инертные корпускулярные частицы;
  • детерминантная группа (эпитоп) – олигосахариды или олигопептиды, располагаются как правило на поверхности молекулы (эпи–); на одном носителе может быть несколько эпитопов, в связи с этим вводят понятие эпитопная плотность; детерминантная группа определяет специфичность антигена.

Свойства антигенов:

  • способны вызывать иммунный ответ;
  • способны к специфическому взаимодействию с различными молекулами и клетками (эритроцитами и т.д.).

Если реализованы оба указанных свойства, то такой антиген называют полноценным, если реализовано только второе свойство, то такой антиген называют неполноценным или гаптеном.

Гаптен может быть фиксирован на специальные носители – адьюванты. Механизм действия адьювантов:

  • создают депо антигенов;
  • укрупняют молекулу;
  • активируют лимфоидную ткань.

Классификация антигенов:

  1. по чужеродности
    • ксеноантигены (гетеро–) – не принадлежат особям данного вида;
    • аллоантигены (гомо–) – принадлежат особям данного вида;
    • аутоантигены – собственные антигены, например «забарьерные» клетки – сперматозоиды, клетки мозга; vсобственные клетки с иммунной активностью;
  2. по типу вызываемого иммунного ответа
    • иммуногены;
    • аллергены;
    • толерогены;
    • трансплантационные антигены;
  3. по связи с вилочковой железой (тимусом)
    • Т– зависимые;
    • Т– независимые.
  4. по локализации в микроорганизме
    • О – антигены – липополисахариды (ЛПС) клеточной стенки, термостабильные, высокоактивные, многообразны у разных микроорганизмов и даже у одного и того же;
    • Н – антиген – жгутиковый белок, термолабильный, достаточно активный, также разнообразен;
    • К – антигены – капсульные гликопротеиды, иммуногенность зависит от химической природы;
    • фимбриальные антигены;
    • протоплазматические антигены;
    • экзоаллергены;
  5. по специфичности для микроорганизма – носителя
    • видовые – у всех особей вида;
    • типовые – вариантные, у варов;
    • групповые – общие для микроорганизмов разных видов и родов;
    • стадийные – появляются на определенных стадиях развития;
    • штаммоспецифичные.

АНТИГЕНЫ МИКРООРГАНИЗМОВ

Большинство возбудителей инфекционных заболеваний человека, их структуры и токсины – полноценные антигены, вызывающие развитие иммунных реакций.

АНТИГЕНЫ БАКТЕРИЙ

По расположению в бактериальной клетке выделяют антигены:

Капсульный антиген – К Ag

Жгутиковый антиген – H Ag

Соматический антиген – O Ag

О–Аг большинства бактерий представлены термостабильным липополисахаридно–полипептидным комплексом; у грамотрицательных бактерий О–Аг представляет эндотоксин.

Н–Аг представлен термолабильным белком флагеллином.

К–Аг большинства бактерий имеют полисахаридную природу. По чувствительности к темпратуре К–Аг подразделяются на А–, В– и L–антигены. Наиболее термостабильными являются А–Аг, выдерживающие кипячение более 2 часов. В–Аг выдерживают нагревание при температуре 60°С в течение часа, а L–Аг разрушаются при нагревании до 60°С.

Для идентификации выделенных микроорганизмов в лаборатории применяют внутривидовую или внутриродовую дифференциацию микроорганизмов, основанную на различиях в антигенной структуре. При этом символически отображают антигенную структуру бактерий в виде антигенной формулы. Например, антигенную формулу одного из сероваров E. coli, вызывающую колиэнтериты у молодняка раннего возраста обозначают как О55:К5:Н21 (серовар, относящийся к серогруппе О55).

Рис. 1. Антигены бактерий: О–антиген (3 – клеточная стенка); Н–антиген (7 – жгутик); К–антиген (2 – капсула).

АНТИГЕНЫ ВИРУСОВ

В каждом вирионе любого вируса содержатся различные антигены. Одни из них являются вирусспецифическими. В состав других антигенов входят компоненты клетки хозяина (липиды, углеводы), которые включаются в его внешнюю оболочку. Антигены простых вирионов связаны с их нуклеокапсидами. По своему химическому составу они принадлежат к рибонуклеопротеидам или дезоксирибонуклеопротеидам, которые являются растворимыми соединениями и поэтому обозначаются как S–антигены (solutio – раствор). У сложноорганизованных вирионов одни антигенные компоненты связаны с нуклеокапсидами, другие – с гликопротеидами внешней оболочки. Многие простые и сложные вирионы содержат особые поверхностные V–антигены – гемагглютинин и фермент нейраминидазу.


Рис. 2. Антигены вирусов гриппа (поверхностные (V–антигены) и серцевинные (S–антигены)).


Рис. 3. Антигены вирусов гепатита В (поверхностные (V–антигены) и серцевинные (S–антигены)).

АНТИГЕНЫ ОРГАНИЗМА

Все ткани и клетки организма обладают антигенными свойствами. Одни антигены специфичны для всех млекопитающих, другие видоспецифичны для человека, третьи – для отдельных групп, их называют изоантигенами (например, антигены групп крови). К антигенам, свойственным только данному организму относятся антигены тканевой совместимости.

Изоантигены

Изоантигены или групповые антигены – это антигены, по которым отдельные индивидуумы или группы особей одного вида различаются между собой.

В эритроцитах, лейкоцитах, тромбоцитах, а также в плазме крови людей открыто несколько десятков изоантигенов.

Изоантигены, генетически связаны, объединены в группы, получившие название: система АВО, резус и др. В основе деления людей на группы по системе АВО лежит наличие или отсутствие на эритроцитах антигенов, обозначенных А и В. В соответствии с этим все люди подразделены на 4 группы. Группа I (О) – антигены отсутствуют, группа II (А) – в эритроцитах содержится антиген А, группа III (В) – эритроциты обладают антигеном В, группа IV (АВ) – эритроциты обладают обоими антигенами. Поскольку в окружающей среде имеются микроорганизмы, обладающие такими же антигенами (их называют перекресно–реагирующими), у человека имеются антитела к этим антигенам, но только к тем, которые у него отсутствуют. К собственным антигенам организм толерантен. При переливании крови или эритроцитов реципиенту, в крови которых содержатся антитела к соответствующему антигену, в сосудах происходит агглютинация перелитых несовместимых эритроцитов, что может вызвать шок и гибель реципиента.

У части людей эритроциты содержат еще особый антиген, получивший название резус–антигена (Rh). По наличию или отсутствию Rh–антигена люди разделяются на две группы – резус (Rh)–положительных и резус (Rh)–отрицательных. При переливании крови Rh–отрицательному реципиенту, если эритроциты донора содержат Rh–антиген, может развиваться гемолитическая желтуха.


Рис. 4. Рецепторы, встроенные в мембрану эритроцита, являются антигенами организма (изоантигены) в том числе антигены А и В системы АВО и резус фактор.

Антигены главного комплекса тканевой (гисто) совместимости.

Помимо антигенов, свойственных всем людям и групповых антигенов, каждый организм обладает уникальным набором антигенов, свойственных только ему самому. Эти антигены кодируются группой генов, находящихся у человека на 6 хромосоме, и называются антигенами главного комплекса тканевой совместимости и обозначаются МНС–антигены (англ. Major histocompatibility complex). МНС–антигены человека впервые были обнаружены на лейкоцитах и поэтому имеют другое название – HLA (Human leucocyte antigens). МНС–антигены относятся к гликопротеинам и содержатся на мембранах клеток организма, определяя его индивидуальные свойства и индуцируют трансплантационные реакции, за что они получили третье название – трансплантационные антигены. Кроме того, МНС–антигены играют обязательную роль в индукции иммунного ответа на любой антиген.

Белки I класса находятся на поверхности практически всех клеток организма. Антигены I класса обеспечивают представление антигенов цитотоксическим CD8+–лимфоцитам, а распознавание этого антигена антигенпредставляющим клеткам другого организма при трансплантации приводит к развитию трансплантационного иммунитета.

МНС–антигены II класса находятся преимущественно на антигенпредставляющих клетках – дендритных, макрофагах, В–лимфоцитах. Основная роль в иммуногенезе антигенов II класса – участие в представлении чужеродных антигенов Т–хелперным лимфоцитам.